
CS 256: Algorithm Design and Analysis

Assignment 8 (due 11/19/2020)

Instructor: Sam McCauley

NP-Hardness

Problem 1. Define the ODD− SUBSET− SUM− RANGE problem as follows. Given n odd
numbers s1, . . . sn, and two target integers T1 and T2, determine if there exists a subset of
numbers that adds up to a value between T1 and T2.

1

Prove that ODD− SUBSET− SUM− RANGE is NP-hard.

Hint: Let’s say that s1, . . . sn were required to be even numbers. Then how could we
solve this problem? Can we extend that idea to the case of odd numbers? You’ll get partial
credit for solving the even case.

Solution.

1“Between” is inclusive, so a subset adding up to exactly T1 or T2 indicates a yes instance.

1



Assignment 8 2

Problem 2 (Extra Credit (10 points)). Define the PRIME− SUBSET− SUM problem
as follows. Given n prime numbers s1, . . . sn, and a target integer T , determine if there exists
a subset of numbers that adds up to exactly T . Prove that PRIME− SUBSET− SUM is
NP-hard.

A result that may be useful is from Baker, Harman, and Pintz (2001): for some constant
C0, for any x ≥ C0, there is a prime in the interval [x− x.525, x].

Solution.



Assignment 8 3

Probability

Problem 3. Let’s say we have a hash table of size n that uses hashing with chaining. Let’s
say the table contains n elements, each of which is stored in a random slot in the hash table
(independent of all other elements).

The probability that a given chain has length k is given by(
n

k

)(
1

n

)k (
1− 1

n

)n−k

This question asks you to give two upper bounds on this formula.

(a) Show that the probability that a given chain has length 0 is at most 1/e.

(b) Show that for k ≥ 1, the probability that a given chain has length k is at most2 1/k!.

Solution.

2This bound is a little loose—in fact, this upper bound is just 1 for k = 1. That’s OK; we’re just trying
to get an idea of the probability. For small k, the correct probability is closer to 1/(ek!).



Assignment 8 4

Problem 4. Let’s say that we have a hash table of size 2n (with random hash functions)
that uses linear probing. In particular, assume that we have a hash function h that takes in
an element x and maps it to a number from 0 to 2n−1. For any hash slot s ∈ {0, . . . , 2n−1},
Pr[h(x) = s] = 1/2n. Assume that the output of h is fully independent: Pr[h(x) = s] = 1/2n
regardless of the hash of any other elements.

We store the hash table using an array A of size 2n. To insert an element x, we check if
A[h(x)] is empty; if so we store x in A[h(x)]. Otherwise, we move to A[h(x) + 1] and repeat
the same process, continuing until an empty slot is found. This hash table is “circular”: it
loops back to the beginning if this process goes off the end of the table. So if slot 2n− 1 of
the table is full, we then examine slot 0, then slot 1, etc.

Let’s say we insert n items into the hash table. Afterwards, we insert a new item i.
Answer these two questions about the probability of which slot i is stored in. Your answer
can be an equation (it does not need to be in a simple form); however, you should explain
your answer.

(a) What is the probability that i is stored in A[h(i)]?

(b) What is the probability that i is stored in A[h(i) + 1]?3

Let’s break this question down further. First, for k ∈ {1, 2, . . . , n}, let Pk be the
probability that A[h(i) − k] and A[h(i) + 1] are empty, but the k consecutive slots
before h(i) + 14 contain an element. If we knew P1, P2, . . . Pn, then we could return the
probability that i is stored in A[h(i) + 1] as P1 + P2 + . . . + Pn.

Now let’s calculate Pk for each k.

Main question (full points for answering this): What is the probability that of
the n items inserted into the hash table, exactly k of the items hash to the k + 1 slots
before h(i) + 1; that is, there are k items j1, j2, . . . jk such that h(j`) ∈ {h(i)−k, h(i)−
k + 1, . . . , h(i)} for all 1 ≤ ` ≤ k?

Multiplying your response to the main question by5 1
k+1

(
1− n−k

2n−k−1

)
obtains Pk. Sum-

ming over all Pk obtains the answer.

Solution.

3Since A is circular, if h(i) = 2n− 1, this is asking for the probability that i is stored in A[0].
4Namely, A[h(i)− k + 1], A[h(i)− k + 2], . . . A[h(i)]; all of these indices are modulo 2n.
5Where did this number come from!? The answer is actually part (a)! We know that there are k items

in h(i) − k, h(i) − k + 2, . . . , h(i) and we want the probability that the first slot is empty. Similarity, there
are n − k items in the remaining slots, and we (again) want the probability that the first slot is empty.
Multiplying obtains this answer.



Assignment 8 5

Problem 5. We roll a standard die over and over. What is the expected number of rolls
until the first pair of consecutive sixes appear? (Hint. The answer is not 36.)

Solution.



Assignment 8 6

Problem 6. Consider the following algorithm for generating a biased random coin. The
subroutine FairCoin returns either 0 (heads) or 1 (tails) with equal probability; the random
bits returned by two different calls to FairCoin are mutually independent.

BiasedCoin:
if FairCoin = 0:

return 0
else:

return 1−BiasedCoin

(a) Prove that BiasedCoin returns 1 with probability 1/3. (Hint. Easier to show that it
returns 0 with probability 2/3.)

(b) What is the expected number of times that BiasedCoin calls FairCoin?

Solution.


