CS 256: Algorithm Design and Analysis

Assignment 6 (due 11/05/2020)

Instructor: Sam McCauley

Problem 1. A complex number x is written $a+b i$, where a and b are real numbers.
To multiply two complex numbers $a_{1}+b_{1} i$ and $a_{2}+b_{2} i$, we can use the equation:

$$
\left(a_{1}+b_{1} i\right)\left(a_{2}+b_{2} i\right)=\left(a_{1} a_{2}-b_{1} b_{2}\right)+\left(a_{2} b_{1}+a_{1} b_{2}\right) i
$$

We can calculate this final value with four multiplications: $a_{1} a_{2}, b_{1} b_{2}, a_{2} b_{1}$, and $a_{1} b_{2}$. Give a method to calculate this value using only three multiplications.
(This is a fairly well-known problem, but I'd encourage you to try to think it through yourself. It's a fun puzzle.)

Solution.

Problem 2. Let A and B be $n \times n$ matrices such that each entry in A or B is either 0 or 1. Let $C=A B$ be the product of A and B. Recall that each entry $c_{i j}$ of C is defined as

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

Let's call an entry $c_{i j}$ simple if there is exactly one term k in that equation such that $a_{i k} b_{k j}=1$. That is to say, $c_{i j}$ is simple if and only if $c_{i j}=1$ (since A and B only have entries that are 0 or 1).

Let us call a matrix P the simple witness for C if $P_{i j}=0$ if $c_{i j}$ is not simple, and $P_{i j}=k$ if $c_{i j}$ is simple and $a_{i k} b_{k j}=1$.

Give an $O\left(n^{\log _{2} 7}\right)$ algorithm to construct P, the simple witness for C, given A and B. Note that Strassen's algorithm runs in this time - so I am asking you to construct P using $O(1)$ matrix multiplications, with $O\left(n^{2}\right)$ additional work.

A slower method: Here's a method to construct P in $O\left(n^{3}\right)$ time to get you started. We can find all the simple $c_{i j}$ in $O\left(n^{\log _{2} 7}\right)$ time by multiplying A and B and finding which elements of C are equal to 1 . We can then go through each simple $c_{i j}$; for each, we can find the k such that $a_{i k} b_{k j}=1$ in $O(n)$ time. Since there are $O\left(n^{2}\right)$ simple $c_{i j}$ at most, this gives $O\left(n^{3}\right)$ time overall.

Solution.

Problem 3. (KT 7.5) Is the following statement true or false? If true, you must give a justification.; if false, you must give a counterexample.

Let G be an arbitrary flow network, with a source s, a sink t, and a positive integer capacity c_{e} on every edge e. Let (A, B) be a minimum s - t cut with respect to the capacities $\left\{c_{e}: e \in E\right\}$. Now suppose we add 1 to every capacity; then (A, B) is still a minimum $s-t$ cut with respect to the new capacities $\left\{1+c_{e}: e \in e\right\}$.

Solution.

Problem 4. (Modified KT 7.23 and 7.24) Suppose youre looking at a flow network G with source s and $\operatorname{sink} t$, and you want to be able to express something like the following intuitive notion: Some nodes are clearly on the "source side" of the main bottlenecks; some nodes are clearly on the "sink side" of the main bottlenecks; and some nodes are in the middle. However, G can have many minimum cuts, so we have to be careful in how we try making this idea precise. Here's one way to divide the nodes of G into three categories of this sort.

- We say a node v is upstream if, for all minimum s - t cuts (A, B), we have $v \in A$-that is, v lies on the source side of every minimum cut.
- We say a node v is downstream if, for all minimum s - t cuts (A, B), we have $v \in B$ that is, v lies on the sink side of every minimum cut.
- We say a node v is central if it is neither upstream nor downstream; there is at least one minimum s - t cut (A, B) for every $v \in A$, and at least one minimum s-t cut $\left(A^{\prime}, B^{\prime}\right)$ for which $v \in B^{\prime}$.

In this question, we design an algorithm to classify vertices of G into these categories and use the classification to characterize graphs that have a unique minimum cut. Let f be the maximum flow in G. Consider the cut $\left(A^{*}, B^{*}\right)$, where $A^{*}=\left\{u \mid u\right.$ is reachable from s in $\left.G_{f}\right\}$ (where G_{f} is the corresponding residual graph) and let $B^{*}=V-A^{*}$. Thus, $v(f)=$ $\operatorname{cap}\left(A^{*}, B^{*}\right)$ and $\left(A^{*}, B^{*}\right)$ is a minimum cut of G.
(a) Show that the set A^{*} is the set of upstream vertices of G, that is, v is upstream if and only if $v \in A^{*}$.
(b) Using part (a), describe an efficient algorithm to find the downstream vertices in G. (Hint. Consider the graph G^{R}, with all direction of edges in G reversed.)
(c) Show that G has a unique minimum cut if and only if G has no central vertices, that is, the union of upstream and downstream vertices is the set V.

Solution.

