
CS 256: Algorithm Design and Analysis

Assignment 5 (due 10/24/2020)

Instructor: Sam McCauley

Note on Dynamic Programs. For full credit on a dynamic program, you must clearly
state the following parts.

(a) Subproblem definition: your subproblem must have an optimal substructure.
(b) Recurrence: how should the next subproblem be computed using the previous ones?

This is the core of your algorithm and its correctness. A less ideal alternative to a
recurrence is clear pseudocode for the final iterative dynamic-programming algorithm.

(c) Base case(s): you need to start somewhere!
(d) Final output: in terms of your subproblem.
(e) Memoization data structure: this is often obvious but should not be skipped.
(f) Evaluation order: describes the dependencies between the subproblems.
(g) Time and space analysis.

For this assignment, these are sufficient to argue correctness (that is to say, if you explain
why the above parts are correct, that’s sufficient to show that your algorithm works properly).

The problems in this assignment are in (approximate) order of difficulty. We’ll be seeing
a number of dynamic programming examples over the next few lectures. Some of the later,
more diffiuclt problems will likely become easier as you get more practice with dynamic
programming.
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Problem 1. (Kleinberg Tardos 6.1) Let G = (V,E) be an undirected graph with n nodes.
A subset of the nodes is called an independent set if no two of them are joined by an edge.
Finding large independent sets is difficult in general; but here we’ll see that it can be done
efficiently if the graph is simple enough.

Call a graph G = (V,E) a path if its nodes can be written as v1, v2, ..., vn, with an edge
between vi and vi+1, for i ∈ {1, 2, . . . , n − 1}. With each node vi, we associate a positive
integer weight wi. The problem we want to solve is the following: Find an independent set
in a path G whose total weight is as large as possible.

For example, given the following path

1 8 6 3 6

The maximum weight of an independent set is 14.

(a) Give a counterexample to show that the following “pick the heaviest weight” greedy
algorithm does not always work.

• Start with S = ∅
• While some node remains in G

– Pick a node vi of maximum weight and vi to S

– Delete vi and its neighbors from G

• Return S

(b) Give a simple exponential-time recursive algorithm that gives a correct solution.

(c) Give a dynamic-programming algorithm that takes an n-node path G with weights and
returns the value of the independent set of maximum total weight.

Solution.
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Problem 2. (Erickson 3.6) Solving part (a) is sufficient for full credit on this problem; part
(b) is extra credit. However, I encourage you to (at least) think very hard about how to
solve part (b), as it’s excellent dynamic programming practice.

A shuffle of two strings X and Y is formed by interspersing the characters into a new
string, keeping the characters of Xand Y in the same order.For example, the string BA-
NANAANANAS is a shuffle of the strings BANANA and ANANAS in several different ways.

BANANAANANAS BANANAANANAS BANANAANANAS

Similarly, the strings PRODGYRNAMAMMIINCG and DYPRONGARMAMMICING are both
shuffles of DYNAMIC and PROGRAMMING:

PRODGYRNAMAMMIINCG DYPRONGARMAMMICING

(a) Given three strings A[1..m], B[1..n], and C[1..m+n], describe and analyze an algorithm
to determine whether C is a shuffle of A and B.

(b) (Extra credit: 5 pts) A smooth shuffle of X and Y is a shuffle of X and Y that
never uses more than two consecutive symbols of either string. For example,

• PRDOYGNARAMMMIICNG is a smooth shuffle of the strings DYNAMIC and PRO-
GRAMMING.

• DYPRNOGRAAMMMICING is a shuffle of DYNAMIC and PROGRAMMING, but it
is not a smooth shuffle (because of the substrings OGR and ING).

• XXXXXXXXXXXXXXXXXXX is a smooth shuffle of the strings XXXXXXX and
XXXXXXXXXXX.

• There is no smooth shuffle of the strings XXXX and XXXXXXXXXXXX.

Describe and analyze an algorithm to decide, given three strings X, Y ,and Z, whether
Z is a smooth shuffle of X and Y .

Hint: What do you need to change in order to build up a smooth shuffle rather than a
normal shuffle? What do you need to keep track of to ensure that you can make this
distinction?

Solution.



Assignment 5 4

Problem 3. (From Steve Skiena’s Algorithm Design Manual) Consider the problem of stor-
ing n books on shelves in a library. The order of the books is fixed by the cataloging system
and so cannot be rearraged. Let book bi have thickness ti and height hi, for 1 ≤ i ≤ n. Let
the length of each bookshelf at this library be L. Suppose we have the freedom to adjust
the height of each shelf to fit the tallest book on it. The cost of a particular layout is the
sum, over each shelf, of the height of the largest book on that shelf. (So if shelf 1 has books
with heights (1, 5, 3) and shelf 2 has books with heights (2, 4), the total cost is 5 + 4 = 9.)

(a) Give an example to show that the greedy algorithm of stuffing each shelf as full as
possible (that is, fill the first shelf with as many books as possible until book bi does
not fit, and then repeat the same process on subsequent shelves) does not always give
the minimum overall height.

(b) Give a dynamic programming algorithm that computes the height of the optimal ar-
rangement, and analyze its time and space complexity. (Hint. We have done a similar
example in class with a different cost function and constraints.)

Solution.


