CS256-01: Algorithm Design and Analysis

Assignment 0 (due 9/17/2020)

Instructor: Sam McCauley

Note. This homework will not be graded on correctness but on completion-to get full points, you must attempt all the questions (except the optional feedback question).

The goal of this assignment is for you to check your familiarity with the background material from Data Structures (CS136) and Discrete Math (MATH200), and for you to get comfortable with $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$. It is your responsibility to fill in the gaps in your knowledge.

Submission guidelines. When submitting your solution PDF on Gradescope, you must match questions to pages in the PDF. This takes less than a minute and is crucial for efficient and anonymous grading. Sometimes, you may need to mark pages approximately, e.g., for multi-part questions such as Problem 2.

Finally, don't forget to cite your sources and collaborators at the end.
There is one question per page of this assignment. Make sure you scroll to see all pages.

Problem 1. Please sign up for slack using the url below. You must sign up for slack to complete this assignment!

Remember also to complete the intro form by the end of Sunday Sep 13; a link has been included below for convenience.

Slack: https://join.slack.com/t/williamsalgorithmsf20/shared_invite/zt-hfc561hd-cf_ ~4r79yIE1BXfvQaj8_A

Intro Form: https://forms.gle/Lt8zF4BWaU5Jt5gg7

Problem 2. For each of the following, answer with the tightest upper bound from this list: $O(\log n), O(n), O(n \log n), O\left(n^{2}\right), O\left(2^{n}\right)$. Briefly justify your answer.
(a) The number of leaves in a complete ${ }^{1}$ binary tree of height n :

Solution.
(b) The depth of a complete binary tree with n nodes:

Solution.
(c) The number of edges in an n-node tree:

Solution.
(d) The worst-case run time to sort n items using merge sort:

Solution.
(e) The number of distinct subsets of a set of n items:

Solution.
(f) The number of bits needed to represent the positive integer n :

Solution.
(g) The time to find the second largest number in a set of n (not necessarily sorted) numbers:

Solution.

[^0]Problem 3. Let A, B be sets. Prove by contradiction that $A \cap B=\emptyset \Longrightarrow A \subseteq \bar{B}$.

Solution.

Problem 4. In this question, we will prove the following claim:

Claim 1. Any tree with n vertices has exactly $n-1$ edges.

First, we will look at a "false induction" proof for Claim 1, which feels like real induction ${ }^{2}$ but does not prove the claim.
(a) Explain, in your own words, why the following attempt at a proof by induction does not prove Claim 1.

Proof by induction on number of vertices $n=|V|$.

- Base case. A tree with $n=1$ must have 0 edges thus the claim holds.
- Inductive hypothesis. Assume that any arbitrary tree T with $n \geq 2$ vertices has $n-1$ edges.
- Inductive Step. Suppose we add one more leaf to T to get a new tree T^{\prime}. This new tree has $n+1$ vertices and one more edge than T. Thus, T^{\prime} has $\left|V\left(T^{\prime}\right)\right|-1=n$ edges, which proves Claim 1.

Solution.
(b) Give a correct proof by induction for Claim 1.

Solution.

[^1]Problem 5. Describe your experience using $L^{A} T_{E} X$ to typeset this document, e.g., did you use Overleaf or an installed $T_{E} X$ application? was the template useful? what resources did you use to learn/debug?

Answer.

Acknowledgments

Cite your sources and collaborators here. (Make sure this section starts on a new page and is the last page of the submission)

[^0]: ${ }^{1}$ Complete: Every leaf has same depth and every non-leaf has two children.

[^1]: ${ }^{2}$ In fact, this was the most common mistake made by students when this question was asked in CSCI 136.

