CSCI 136
Data Structures &
Advanced Programming

Priority Queues
Introduction & Implementations
Priority Queues

• Priority Queues
 • Supports Add & Remove (Min) operations

• Heaps
 • A “somewhat-ordered” data structure
 • Conceptual structure
 • Efficient implementations
 – Array Representations of (Binary) Trees
A New Data Structure

Goal: Design a structure S to hold items with priorities

- S should support operations
 - `add(E item);` // add an item
 - `E remove();` // remove highest priority item

- S should be designed to make these two operations fast

Such structures are called *Priority Queues*
Priority Queues

- Priority queues are used for:
 - Scheduling processes in an operating system
 - Priority is function of time waiting + process priority
 - Order services on server
 - Backup is low priority, so don’t do when high priority tasks need to happen
 - Scheduling future events in a simulation
 - Medical waiting room
 - Huffman codes - order by tree size/weight
 - A variety of graph/network algorithms
Priority Queues

• Name is misleading: They are not queues
• Always remove object with highest priority regardless of when it was enqueued
• Data can be received/inserted in any order, but it is always returned/removed according to priority
• Like ordered structures (i.e., OrderedVectors and OrderedLists), PQs require comparisons of values
On Terminology

- In colloquial English, the phrases "highest priority" and "number 1 priority" are used interchangeably.
- So keep in mind that, often
 \[
 \text{Higher Priority} = \text{Smaller Value}
 \]
- A PQ removes the \textit{smallest} value in an ordering: that is, the \textit{highest priority} value!
public interface PriorityQueue<E extends Comparable<E>> {
 public E getFirst(); // peeks at minimum element
 public E remove(); // removes minimum element
 public void add(E value); // adds an element
 public boolean isEmpty();
 public int size();
 public void clear();
}
Notes on PQ Interface

• Unlike previous structures, we do not extend any other interfaces for many reasons
 • Random access is prohibited
 • Removal of arbitrary values is prohibited
• PriorityQueue uses Comparables
 • methods use Comparable parameters and
 • methods return Comparable values
• Could be made to use Comparators instead…
Implementing PQs

- **OrderedVector?**
 - Keep ordered vector of objects
 - $O(n)$ to add/remove from vector
 - Can we do better than $O(n)$?

- **Binary Search Tree**
 - Would need to be balanced for good performance
 - Would get $O(\log n)$ which is very good

- **Could relaxing requirements of total ordering help**
 - Overhead of balancing might be avoided

- **Heap!**
 - Partially ordered binary tree
Heap (aka Min-Heap)

• A heap is a special type of binary tree
• A heap is a binary tree where:
 • Root holds smallest (highest priority) value
 • Subtrees are also heaps (this is crucial!)
• So values increase in priority (decrease in value) from leaves to root (from descendant to ancestor)
• Alternate definition: A tree is a heap if and only if
 • For all nodes: node.value() >= node.parent.value()
 • This is called the heap property or the heap invariant
• Several valid heaps for same data set (no unique representation)
 • Note: variants allow more than 2 children per node
Inserting into a Heap

2

5

11

19

21

7

24

22

17

3

30

35
Inserting into a Heap
Inserting into a Heap
Inserting into a Heap

Diagram of a heap with numbers 2, 4, 5, 7, 11, 19, 21, 22, 24, 30, 35.
Inserting into a Heap

• Add new value as a leaf
• “Percolate” it up the tree
 • while (value < parent’s value) swap with parent
• This operation preserves the heap property since new value was the only one violating heap property
• Efficiency depends upon speed of
 • Finding a node at which to add new child
 • Finding location of parent
 • Tree height
Removing Min From a PQ

![Binary Min Heap]

- 3
- 4
- 5
- 11
- 19
- 7
- 24
- 21
- 22
- 17
- 30
- 35
Removing Root From a PQ

• Copy root value, save it to return
• Find a leaf, delete it, put its data in the root
• “Push” data down through the tree
 • while (data.value > value of (at least) one child)
 • Swap data with data of smaller child
• This operation preserves the heap property
• Efficiency depends upon speed of
 • Finding a leaf
 • Finding locations of children
 • Height of tree
Key Operations/Properties

- **Insert efficiency** depends upon speed of:
 - Finding a node at which to add new child
 - Finding location of parent
 - Tree height

- **RemoveMin efficiency** depends upon speed of:
 - Finding a leaf
 - Finding locations of children
 - Tree Height

- **Goal**: Find tree structure to optimize these
Array-Based Binary Trees

![Binary Tree Diagram]

- Array representation:
 - Index: 0 1 2 3 4 5 6 7 8 9 10 11
 - Elements: 2 3 5 11 17 7 30 21 35 24 19 22
Array-Based Binary Trees

- Encode structure of tree in array indexes
 - Put root at index 0
 - Leave empty slots if no child
- Where are children of node i?
 - Children of node i are at $2i+1$ and $2i+2$
 - Look at example
- Where is parent of node j?
 - Parent of node j is at $(j-1)/2$
Recall: ArrayTrees

- Why are ArrayTrees good?
 - Save space for links
 - No need for additional memory allocated/garbage collected
 - Works well for full or complete trees
 - Complete: All levels except last are full and all gaps are at right
 - “A complete binary tree of height h is a full binary tree with 0 or more of the rightmost leaves of level h removed”
 - No empty slots!

- Why is this an OK assumption for us? Most trees are not complete…

- Insight: We can guarantee that our heap is always a complete tree by smart add/remove choices!
Implementing Heaps

- VectorHeap
 - Use conceptual array representation of BT (ArrayTree)
 - But use extensible Vector instead of array (makes adding elements easier)
- Note:
 - Root of tree is location 0 of Vector
 - Children of node in location i are in locations 2i+1 (left) and 2i+2 (right)
 - Parent of node i is in location (i-1)/2
Implementing Heaps

• Features
 • Guarantee no gaps in array (array is complete)
 • Always add in next available array slot (left-most available spot in binary tree;
 • Always remove using “right-most” leaf
 • Heap Invariant becomes
 • data[i] <= data[2i+1]; data[i]<=data[2i+2] (or kids might be null)
 • When elements are added and removed, do small amount of work to “re-heapify”
 • How small? Note: finding a node’s child or parent takes constant time, as does finding “final” leaf or next slot for adding
 • Since this heap corresponds to a full binary tree, the depth of the tree is $O(\log n)$, so add/remove take $O(\log n)$ time!
Implementing Heaps

Details

• Add method uses helper `percolateUp(int location)`
 • `percolateUp` moves newly inserted value up the tree until heap property is restored

• Remove method uses helper `pushDownRoot(int root)`
 • Moves value that remove moved from deleted leaf to root down the tree until heap property is restored

• Let's look some examples
Example : Add(4)

```
  2
 /  \
3   5
|   |
11  7
|  /|
24 30
| /  |
21 22
```

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td>11</td>
<td>17</td>
<td>7</td>
<td>30</td>
<td>21</td>
<td>35</td>
<td>24</td>
<td>19</td>
<td>22</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Example: Add(4)
Example: Add(4)
Example : Add(4)
protected void percolateUp(int leaf) {
 int parent = parent(leaf);
 E value = data.get(leaf);
 while (leaf > 0 &&
 (value.compareTo(data.get(parent)) < 0)) {
 data.set(leaf, data.get(parent));
 leaf = parent;
 parent = parent(leaf);
 }
 data.set(leaf, value);
}
Example: Remove()
Example: Remove()
Example: Remove()
protected void pushDownRoot(int root) {
 int heapSize = data.size();
 E value = data.get(root);
 while (root < heapSize) {
 int childpos = left(root);
 // If node has left child
 // If node has left child
 if (childpos < heapSize) {
 // If right child has smaller value
 if ((right(root) < heapSize) &&
 ((data.get(childpos+1)).compareTo(
 (data.get(childpos)) < 0)) {
 childpos++;
 }
 }
 }
}
// Assert: childpos indexes smaller child
// Compare child to value being pushed down
if((data.get(childpos)).compareTo(value)<0){
 data.set(root,data.get(childpos));
 root = childpos; // keep moving down
} else { // found right location
 data.set(root,value);
 return;
}

} else { // at a leaf! insert and halt
 data.set(root,value);
 return;
}
} } } }
VectorHeap Summary

- Add/Remove are both $O(\log n)$
- Data is not completely sorted
 - “Partial” order is maintained
- Note: VectorHeap(Vector<E> v)
 - Takes an unordered Vector and uses it to construct a heap
 - How
 - Uses VectorHeap add method to insert elements of v
 - This builds the VectorHeap in $O(n \log n)$ time
 - As always, we ask: Can we do better?
Heapifying A Vector (or array)

• Method I: Top-Down
 • Assume V[0...k] satisfies the heap property
 • Now call percolate on item in location k+1
 • Then V[0..k+1] satisfies the heap property

• Method II: Bottom-up
 • Assume V[k..n] satisfies the heap property
 • Now call pushDown on item in location k-1
 • Then V[k-1..n] satisfies heap property
Top-Down vs Bottom-Up

- Top-down heapify: elements at depth d may be swapped d times. Total # of swaps is at most

$$\sum_{d=0}^{h} d2^d = (h - 1)2^{h+1} + 2 = (\log n - 1)2n + 2$$

- This is $O(n \log n)$
- Some intuition: most of the elements are in the lowest levels of the tree, so each of them might have to move to root: $O(\log n)$ swaps per element
Top-Down vs Bottom-Up

- Bottom-up heapify: elements at depth d may be swapped $h-d$ times: Total # of swaps is at most

$$\sum_{d=0}^{h} (h - d)2^d = 2^{h+1} - h - 2 = 2n - \log n + 2$$

- This is $O(n)$ --- beats top-down!

- Some intuition: most of the elements are in the lowest levels of the tree, so each of them will only be pushed down (swapped) a small number of times SO COOL!!!
HeapSort

- Heaps yield another $O(n \log n)$ sort method
- To HeapSort a Vector “in place”
 - Perform bottom-up heapify on the reverse ordering: that is: highest rank/lowest priority elements are near the root (low end of Vector)
 - Now repeatedly remove elements to fill in Vector from tail to head
 - For(int $i = \text{v.size()} - 1; i > 0; i--$)
 - RemoveMin from v[0..i] // v[i] is now not in heap
 - Put removed value in location v[i]