Stack Applications

 The Stack implementation is simple, but
there are many applications, including:

(E\/?ﬂuating mathematical express@

e Searching (Depth-first search)

* Removing recursion for optimization

See textbook for details
because this is VERY useful!

Evaluating Arithmetic Expressions

e Computer programs regularly use stacks to
evaluate arithmetic expressions

e Example: x*y+z

 First rewrite as xy*z+
* we’ll look at this rewriting process in more detail soon

e Then:

* push x

* pushy

* * (pop twice, multiply popped items, push result)
* push z

e + (pop twice, add popped items, push result)

Converting Expressions

* We (humans) primarily use infix notation to evaluate
expressions

. (xHy)iz

* Computers traditionally used postfix (also called
Reverse Polish) notation
e xy+z*

e Operators appear after operands, parentheses are not
necessary

e How do we convert between the two!

e (Compilers do this for us)

Converting Expressions

 Example: x*y+z*w
e Conversion

|) Add full parentheses to preserve order of
operations

(O<Fy)+(z*w))

2) Move all operators (+-*/) after operands
((xy*)(zw¥)+)

3) Remove parentheses
xy*zw*+

Use Stack to Evaluate Postfix Exp

* While there are input “tokens” (i.e., symbols) left:

Read the next token from input.

If the token is a value, push it onto the stack.

Else, the token is an operator that takes n arguments.
(It is known that an operator takes n arguments by its definition.)

e |f there are fewer than n values on the stack — error.

 Else, pop the top n values from the stack and:
— Evaluate the operator, with the values as arguments.
— Push the returned result, if any, back onto the stack.

The top value on the stack is the result of the calculation.
Note that results can be left on stack to be used in future

computations:
e Eg: 32 *4 + followed by 5 / yields 2 on top of stack

Symbolic Example: Converting
then Evaluating

¢ (<) +(ZW) — xy'TWh
e Evaluate xy*zw*+ :
e Push x
 Pushy
e Mult: Pop y, Pop x, Push x*y
e Push z
* Pushw
e Mult: Pop w, Pop z, Push z*w
* Add: Pop x*y, Pop z*w, Push (x*y)+(z*w)
e Result is now on top of stack

Concrete Example: Converting
then Evaluating

¢ (<) +(ZW) — xy'TWh
e Evaluate xy*zw*+ :
e Push x
 Pushy
e Mult: Pop y, Pop x, Push x*y
e Push z
* Pushw
e Mult: Pop w, Pop z, Push z*w
* Add: Pop x*y, Pop z*w, Push (x*y)+(z*w)
e Result is now on top of stack

* Try with: w=3, x=4, y=5, z=6

PostScript

PostScript is a programming language used for
generating vector graphics
e Best-known application: describing pages to printers

It is a stack-based language

* Values are put on stack

e Operators pop values from stack, put result back on
* There are numeric, logic, string values

* Many operators

Let’s try it: The ‘gs’ command runs a PostScript
interpreter-....

Implementing a tiny part of gs is something we will
do in lab... it's a lot of fun!

