
Stack Applications

• The Stack implementation is simple, but 
there are many applications, including:
• Evaluating mathematical expressions
• Searching (Depth-first search)
• Removing recursion for optimization
• …

See textbook for details 
because this is VERY useful!



Evaluating Arithmetic Expressions
• Computer programs regularly use stacks to 

evaluate arithmetic expressions 
• Example: x*y+z
• First rewrite as xy*z+

• we’ll look at this rewriting process in more detail soon

• Then:
• push x
• push y
• * (pop twice, multiply popped items, push result)
• push z
• + (pop twice, add popped items, push result)



Converting Expressions

• We (humans) primarily use infix notation to evaluate 
expressions
• (x+y)*z

• Computers traditionally used postfix (also called 
Reverse Polish) notation
• xy+z*

• Operators appear after operands, parentheses are not 
necessary

• How do we convert between the two?
• (Compilers do this for us)



Converting Expressions

• Example: x*y+z*w
• Conversion

1) Add full parentheses to preserve order of 
operations
((x*y)+(z*w))

2) Move all operators (+-*/) after operands
((xy*)(zw*)+)

3) Remove parentheses
xy*zw*+



Use Stack to Evaluate Postfix Exp
• While there are input “tokens” (i.e., symbols) left:

• Read the next token from input.
• If the token is a value, push it onto the stack.
• Else, the token is an operator that takes n arguments.

(It is known that an operator takes n arguments by its definition.)
• If there are fewer than n values on the stack ® error.
• Else, pop the top n values from the stack and:

– Evaluate the operator, with the values as arguments.
– Push the returned result, if any, back onto the stack.

• The top value on the stack is the result of the calculation.
• Note that results can be left on stack to be used in future 

computations:
• Eg: 3 2 * 4 + followed by 5 / yields 2 on top of stack



Symbolic Example: Converting 
then Evaluating

• (x*y)+(z*w) → xy*zw*+
• Evaluate xy*zw*+ :

• Push x
• Push y
• Mult: Pop y, Pop x, Push x*y
• Push z
• Push w
• Mult: Pop w, Pop z, Push z*w
• Add: Pop x*y, Pop z*w, Push (x*y)+(z*w)
• Result is now on top of stack



Concrete Example: Converting 
then Evaluating

• (x*y)+(z*w) → xy*zw*+
• Evaluate xy*zw*+ :

• Push x
• Push y
• Mult: Pop y, Pop x, Push x*y
• Push z
• Push w
• Mult: Pop w, Pop z, Push z*w
• Add: Pop x*y, Pop z*w, Push (x*y)+(z*w)
• Result is now on top of stack

• Try with: w=3, x=4, y=5, z=6



PostScript

• PostScript is a programming language used for 
generating vector graphics
• Best-known application: describing pages to printers

• It is a stack-based language
• Values are put on stack
• Operators pop values from stack, put result back on
• There are numeric, logic, string values
• Many operators

• Let’s try it: The ‘gs’ command runs a PostScript 
interpreter….

• Implementing a tiny part of gs is something we will 
do in lab... it‘s a lot of fun!


