
CSCI 136
Data Structures &

Advanced Programming

Memory, Objects, and Primitive
Types

Goals

• Clear up some important points about Java:
• Where are objects stored?
• What distinguishes objects and primitive types?
• When do values change?
• How to move data around in Java

• Some stuff we’ve talked about
• Some stuff you’ve probably seen while

coding
• Some new stuff 2

Basics of Variables

• Variables store information
• Behind the scenes: all of the local variables

in each method are stored next to each
other in memory

int x;
int y;
int z; x y z

What is stored?

• For primitive types: exactly what you’d
expect

• int stores a binary number equal to the
integer

• char stores the Unicode value for the
string in binary

x

int x=10;

00000000000000000000000000001010

How to store objects

• When you use new, Java finds some unused
memory (anywhere---not necessarily near
any local variables) to store the object

• Needs to have room for all instance
variables, etc.

new Student()
age grade ID

What happens when you store an object

• You really just store the “address” of where
the actual object is

int x;
Student s1;
Student s2;

x s1 s2

What happens when you store an object

• You really just store the “address” of where
the actual object is

int x;
Student s1;
Student s2;
s1 = new Student();

x s1 s2

age grade ID

What happens when you store an object

• You really just store the “address” of where
the actual object is

int x;
Student s1;
Student s2;
s1 = new Student();
s2 = new Student(); x s1 s2

age grade ID

age grade ID

Why store the address?

• Why can’t we just make room inline like
with an int?

• Answer: we may not know how large an
object is

• Any examples of this?

Some implications

int x;
Student s1;
Student s2;
s1 = new Student();
s2 = new Student();

x s1 s2

age grade ID

age grade ID

Some implications

int x;
Student s1;
Student s2;
s1 = new Student();
s2 = new Student();
s2 = s1; x s1 s2

age grade ID

age grade ID

Some implications

x s1 s2

age grade ID

age grade ID

int x;
Student s1;
Student s2;
s1 = new Student();
s2 = new Student();
s2 = s1;

Some implications

x s1 s2

age grade ID

age grade ID

int x;
Student s1;
Student s2;
s1 = new Student();
s2 = new Student();
s2 = s1;

• Any changes made to s2
will affect s1 and vice versa

• The former s2 will be
(eventually) deleted

Copy

• Sometimes: want to actually make a new copy of an object
• Need to make a new one (using new and calling a constructor)

• Some classes have a “copy constructor,” which take an object
of the same type as argument and copy it over

Vector<Integer> vec1 = new Vector();

vec1.add(20);
Vector<Integer> vec2 = new Vector(vec1);

//the constructor for Vector copies vec1

Copy: primitive types

• Primitive types always just copy over the
value

int x = 10;
int y = 20;
y = x;
y++;

After all this, y
stores 11 and x

stores 10

Method Parameters

• All parameters to methods are passed by
value

• This means that any changes to parameters
are not reflected in the original method

Parameters with objects

• Objects are passed the same way
• But, it’s the location that must remain

unchanged
• You can change the contents of objects in a

method
• But you cannot change which object it is

• Let’s see an example

null

• Keyword in Java

• What happens when a variable doesn’t store
an address yet? Instead it stores null

• Idea: doesn’t point to any object

• Any local object variables are null by default

Cleaning up old data

• When are objects deleted?
• Can’t use scope
• Could be “pointed to” from another method

• Answer: Garbage collector
• Every once in awhile, Java looks at everything

you’re storing in memory. If you’re not
pointing to an object anymore, it’s deleted

Cleaning up old data

int x;
Student s1;
Student s2;
s1 = new Student();
s2 = new Student();
s2 = s1;

age grade ID

age grade ID

Cleaning up old data

int x;
Student s1;
Student s2;
s1 = new Student();
s2 = new Student();
s2 = s1;
s1 = null;

age grade ID

Cleaning up old data

• Garbage collection runs automatically
• You don’t need to think about it!
• If you aren’t using it, it will be deleted
• If you are using it, Java won’t delete it

• Only comes up with space usage
• Your program will only clear out space if you

stop keeping track of it

Autoboxing

• Sometimes we really want primitive types to
be treated as objects

• Otherwise we can’t have a Vector of ints,
or an Association of ints (annoying!)

• Java has a tool to help us out with this

Autoboxing

• Java converts int to Integer, char to
Character, etc., automatically

• Your vector really does store objects of type
Integer. But it’s ok to do something like:

Vector<Integer> vec = new Vector<Integer>;

vec.add(10);

Unboxing

• Can do the opposite too!

Vector<Integer> vec = new Vector<Integer>;

vec.add(new Integer(10));

int x = vec.get(0);

SCOPE

Scope

• How long do local variables last in Java?
• When can they be accessed?

• Not talking about instance variables/objects-
--we already went over how long those last

27

Methods

• Any variable declared in a method only lasts
until the end of the method

Loops/if statements/etc.

• Any variable declared in a loop (or an if
statement, etc.) only lasts until the end of
that loop

Slightly more technical outlook

• Local variables only last inside the curly
braces in which they were created

• Even if you add in extra braces
• Unclear why you’d want to?
• But worth bearing in mind:
• Variables cannot be accessed after the {} they

are in is closed

Takeaways

• Objects are “pointed to” rather than being
stored inline

• Take care when copying objects
• But, helpful when passing arguments to

functions since changes to instance variables
persist

• Autoboxing and garbage collection help us
out in the background

• Keep an eye out for scope!

