
Generics and Dictionaries

Instructors: Sam McCauley and Dan Barowy

February 21, 2022



Admin

• Remember to do the reading! (We may ask about it on quizzes, especially on

Monday)



Admin: Masking

• Instructors now allowed to unmask in classrooms???

• We’ll send around a google form after all three lecture sections

• Idea: gauge what you all think. We really have no idea where all of you are
coming from, so hard to make a decision until then

• (Not a poll; just trying to get high-level idea)

• We don’t really mind masking. Want to ensure best possible experience for

you.

• Only lectures! We’ll continue all masking in labs, office hours, etc.



Wordgen Lab

• Any questions?

• If you’re still working on it, be sure to make time to attend TA hours over the

next couple days.

• Almost definitely one of the harder labs in the course! But you’re almost there.



Today

• How can we create a Vector class?

• Look at how the actual Vector class is created

• Start time and space analysis, as well as asymptotics



Building the Vector class



Creating a Vector class

• You have everything you need to create your own Vectors!

• Let’s work through it together. (Then we’ll look at the structure5 code and

see how we did.)

• Goal: hold sequence of items. Should be able to handle add(E), get(int),

set(int, E), contains(E)

• Use generics to handle any type of item



Designing the class

• What questions should you ask yourself when you start thinking about how to
design a class?

• What data does this class need to store? How should we store it?

• What methods do we want to use to interact with this data?



A caveat about Generics: arrays don’t work

• Cannot create an array of a generic type in Java

• Due to some back-end issues with how generics are implemented

• What can we do instead?

• Create an array of type Object. Handle casting manually.

• Good news: we do the casting in the Vector class. This issue is invisible to the

end user!

private E[] items; //not allowed! Will give an error

private Object[] items; //allowed! We have to do casting, etc. manually



Thinking about Storing the Data

• What does an array not support that a Vector does?

• Need to declare the size of an array up front. But don’t need to for Vector!

• How can our Vector class deal with this?

• Let’s start with an array of size 10. What do we do when it fills up?

• Answer: allocate a bigger array and copy it over!

• Let’s create a method that does this for us: checks if there’s enough room in the
array, and grows it if not. We can call this ensureCapacity(int minCapacity).
We’ll come back to this; let’s fill in some methods in the meantime.



Drafting the Vector methods

• Let’s write add, set, get

• Don’t forget to cast when appropriate!

• Once we have these we can test.

• Finally, let’s write contains



Ensuring the Capacity

• If the array is too small, how large should we make it?

• One option: make it minCapacity size

• Another option: double its size (until large enough)

• Downside: wastes space

• Upside: much longer until we have to resize it again

• We’ll see on Friday that doubling leads to much better performance

• Let’s write out ensureCapacity



public vs private methods

• The methods we use to interact with the data stored in an object have to be

public (so that they can be called)

• But methods that are only used internally should be private

• Which would you say ensureCapacity is?

• Somewhat debatable, but probably private. Only make the array larger when

necessary to carry out operations like add.

• All done! Let’s test. Then, let’s quickly check what our work looks like

compared to the structure5 implementation



Time and Space Analysis



How efficient is a given method?

• We saw how to do contains in a Vector. How many items did we have to look

through in the worst case?

• Let’s say I’m looking through a literal dictionary. Is my contains method very

efficient? Do you have a faster way?

• What if I say I’m a really fast reader. Is your method still faster?

• Probably
• Unless the dictionary is really short. A fast reader may be able to read through a
dictionary with 10 elements better than a more clever search method

• Idea here: analyze the efficiency of a methodology. Your speed—or your

computer’s speed—shouldn’t be a factor.



What do we mean by efficiency?

• Perhaps: how long does a method take to run in seconds?

• How much space does it take? (How many bits do we need to store on our

computer during the calculation)?



Algorithmic Efficiency

• We are looking for worst-case guarantees

• When you write a piece of code, the goal here is to say “I promise that my
code will always run efficiently.”

• It’s a much more widely applicable statement than “I tested my code out and it
seems to run efficiently.”

• What if your tests didn’t take into account a key scenario?



The Challenge of Analyzing Time

• Different computers run at different speeds

• Computers are complicated! Adding two numbers together (for example) can

take drastically different times depending on context.

• Good news: often times these details don’t change much

• Example: It doesn’t matter (too much) how fast I read if I’m scanning

thousands of extra dictionary pages.


	Building the Vector class
	Time and Space Analysis

