
Ordered Structures and Bit
Representations

Instructors: Sam McCauley and Dan Barowy

April 13, 2022



Admin

• Masks optional from today in class

• Keeping masks on in lab in the short term

• How was lab 6?

• Data visualization talk today at 7PM in TBL 211



Wrapping Up Ordered Structures



Beginning the OrderedVector class

public class OrderedVector<E extends Comparable<E>>

implements OrderedStructure<E> {

protected Vector<E> data;

public OrderedVector() {

data = new Vector<E>();

}

public void add(E value) {

int pos = locate(value);

data.add(pos, value);

}



Implementing locate()

• Finds an item in an OrderedVector using binary search

• We’ll be using an iterative version of binary search (not recursive)

• Recall the invariant of binary search:

• If the item we’re looking for is in the array, it is located somewhere within

low...high



Locate

protected int locate(E target) {

Comparable<E> midValue;

int low = 0; // lowest location

int high = data.size(); // highest location

int mid = (low + high)/2; // low <= mid <= high

while (low < high) {

midValue = data.get(mid);

if (midValue.compareTo(target) < 0) {

low = mid + 1;

}

else {

high = mid;

}

mid = (low+high)/2;

}

return low;

}



Filling in the rest of OrderedVector

• Now that we have locate() the rest is pretty easy!

• We already used locate() to fill in add()

• Let’s use locate() to fill in contains() and remove()



Final OrderedVector Methods

public boolean contains(E value) {

int pos = locate(value);

return pos < size() && data.get(pos).equals(value);

}

public Object remove (E value) {

if (contains(value)) {

int pos = locate(value);

return data.remove(pos);

}

else {

return null;

}

}

These can be found in the structure5 OrderedVector class.



OrderedVector Performance

• Locate?

• O(log n)

• Add?

• O(n): locate is O(log n), but shifting items down is O(n). So overall
O(n+ log n) = O(n).

• Contains?

• O(log n) (just a call to locate and O(1) extra work)

• Remove?

• Like add: locate, and then remove (shifting items down as necessary); O(n).



OrderedList

• Let’s talk through how to implement an ordered Linked List (say a

SinglyLinkedList)

• How can we binary search in a singly linked list? What’s the challenge of doing

so?

• Idea of binary search: we compare the item we are searching for to the middle

element in the range low...high (using a call to get())



Locating in a Linked List

• How long does finding get(mid) take in a linked list?

• O(n) just to find one mid item

• We can show: O(n) time for locate() in total

• Takeaway: ordering a linked list does not lead to faster search!

• The OrderedList class is still included in structure5 however



A Note of Care About Ordered Structures

• This issue is common to all the structures we use that keep items in some

order based on their contents

• No good way around it

• Problem: we need to assume that every time the objects change, their position

in the OrderedVector is updated

• Let’s look at an example



Sorting Students by Grade

• We can easily change the Student class to allow comparison by age

• Then we can store students in an ordered list by age

• Let’s look at an example

• What happens when the age changes?

• Answer: OrderedVector doesn’t know the age changes, so doesn’t stay sorted



An Example that Does Work

• Let’s store a list of associations between the population of a county and the

percentage of people who voted third party in the 2020 election

• So we’d like an OrderedVector<Association<Integer, Double>>

• Wait a minute—the OrderedVector can only store things that implement

Comparable. But Association doesn’t implement Comparable

• The type of the key—Integer—does implement Comparable, however

• Enter: the ComparableAssociation. (Some of you may have used this in lab

5.)



ComparableAssociation summary

public class ComparableAssociation<K extends Comparable<K>,V>

extends Association<K,V>

implements Comparable<ComparableAssociation<K,V>>, Map.Entry<K,V>

{

public int compareTo(ComparableAssociation<K,V> that)

{

return this.getKey().compareTo(that.getKey());

}

}

(This is an example of a class that implements two different interfaces. We’ll talk

about Map.Entry in 3 or so weeks.)



Finishing Our Example

• We can store an OrderedVector of

ComparableAssociation<Integer,Double>

• But, what happens when we change one of the ComparableAssociations?

• In particular, what happens when the population of one of the counties

changes? (I.e. we change the key?)

• Answer: ComparableAssociation does not allow us to change the key!

• Takeaway: if you’re storing a class type in an ordered data structure, control
access so that the sorted order cannot change

• If possible



Binary Representation



How are numbers stored in a computer?

• Using binary!

• Set of 0s and 1s (32 for int, 64 for long)

• Let’s see some examples



Bit operations

• Sometimes in computer science it’s useful to operate on the bits of a number

directly

• << is left shift: shift the bits left (they fall off if run out of room)

• >> is right shift: shift the bits right (they fall off if run out of room)

• Be careful with negative numbers!!!

• What are these equivalent to mathematically?

• &: take the bitwise and of the two numbers

• Go bit by bit. If both bits are 1, resulting bit is 1. Otherwise it is 0.

• Example on board

• Why would we use this?



Trees



Trees

• All the ways we’ve had to store data has been one-dimensional.

• At the end of the day: every item in our data structure is the ith item in the data
structure for some i

• All of our access has (indirectly) been through such a one-dimensional mapping

• With trees, we add a second dimension to how we store data

• Drastic improvements in what we can store and the performance we can

achieve



Trees We’ve Seen

{1,3,5,8}: 6

{3,5,8}: 5

{5,8}: 2

{8}: -3 {8}: 2

{5,8}: 5

{8}: 0 {8}: 5

{3,5,8}: 6

{5,8}: 3

{8}: -2 {8}: 3

{5,8}: 6

{8}: 1 {8}: 6

We can draw the method calls made by a recursive algorithm using a tree! (The

above is canMakeSum() from lab 3.)

Here: each of the rectangles above (called a node) represents a recursive call. We

connect each method to the methods it calls.



Trees We’ve Seen

5 9 12 18 22 24 30

Calling back to last lecture: what happens when we do binary search on this array?

Something like: first, we compare our query element to 18. Based on the result, we

then compare it to either 9 or 24.



Trees We’ve Seen

5 9 12 18 22 24 30

18

9

5 12

24

22 30

Binary search seems to also have a tree-like structure. We’ll see how to store data

in a very similar tree very soon.



Game Tree



Family “Tree”

Same basic idea. Though note: not quite a tree by our definition.



Definition of a Tree

• Tree consists of nodes (the boxes in the images we saw above)

• Nodes are connected by edges (lines in the images we saw above)

• There is one root node that does not have a parent node

• Every other node has exactly one parent node

• Nodes may have some children.

• A node without a child is called a leaf



Labelling nodes

{1,3,5,8}: 6

{3,5,8}: 5

{5,8}: 2

{8}: -3 {8}: 2

{5,8}: 5

{8}: 0 {8}: 5

{3,5,8}: 6

{5,8}: 3

{8}: -2 {8}: 3

{5,8}: 6

{8}: 1 {8}: 6

What is the root node in this tree? What are the leaves?



Family “Tree”

Why isn’t this a tree?

• Answer: nodes have multiple parents! (Plus there are a bunch of extra edges in

this image.)



Binary Tree



Binary Tree

• Binary Tree: A tree where each node has at most 2 children

• The degree of a node is the number of children it has. So a binary tree is a

tree where all nodes have degree at most 2.

• Let’s see an example of a binary tree. Then, we’ll discuss the BinaryTree

class that comes with structure5



Expression Tree

4× 2+ 3

+

×

4 2

3

We can write arithmetic expressions using a binary tree. (Why is it binary?)



Using a Binary Tree

• Goal: store an expression using a binary tree

• Then write some code to evaluate the expression

• Takeaway: practice with binary trees



How to Store a Binary Tree?

• Nodes should probably be objects of some class type.

• Store its children

• In the SinglyLinkedList, we had a hidden Node class; the SinglyLinkedList

itself only stored a pointer to the head

• BinaryTree<E> does not work that way! Just a single recursive class



Visualizing Trees Recursively

18

9

5 12

24

22 30

29 35

Each node in a (binary) tree can be viewed as the root of its own (binary) tree.



BinaryTree plan

• Each node is stored as a BinaryTree object

• Stores the value stored at the node

• Stores the parent (of type BinaryTree)

• The root of the tree stores null for its parent

• Stores the left and right children (both are of type BinaryTree

• If either doesn’t exist, points to an empty node
• Children of an empty node point to the node itself
• There are other ways to implement missing children in a binary tree; this is just
one

• Let’s take a look at the code for BinaryTree

• Now, let’s look at how we can evaluate a tree of expressions stored in a

BinaryTree


	Wrapping Up Ordered Structures
	Binary Representation
	Trees
	Binary Tree

