Ordered Structures and Bit Representations

Instructors: Sam McCauley and Dan Barowy
April 13, 2022
Admin

- Masks optional from today in class
- Keeping masks on in lab in the short term
- How was lab 6?
- Data visualization talk today at 7PM in TBL 211
Wrapping Up Ordered Structures
Beginning the `OrderedVector` class

```java
public class OrderedVector<E extends Comparable<E>>
    implements OrderedStructure<E> {

    protected Vector<E> data;

    public OrderedVector() {
        data = new Vector<E>();
    }

    public void add(E value) {
        int pos = locate(value);
        data.add(pos, value);
    }
```
Implementing `locate()`

- Finds an item in an `OrderedVector` using binary search
- We’ll be using an **iterative** version of binary search (not recursive)
- Recall the invariant of binary search:
 - If the item we’re looking for is in the array, it is located somewhere within `low...high`
protected int locate(E target) {
 Comparable<E> midValue;
 int low = 0; // lowest location
 int high = data.size(); // highest location
 int mid = (low + high)/2; // low <= mid <= high
 while (low < high) {
 midValue = data.get(mid);
 if (midValue.compareTo(target) < 0) {
 low = mid + 1;
 } else {
 high = mid;
 }
 mid = (low+high)/2;
 }
 return low;
}
Filling in the rest of `OrderedVector`

- Now that we have `locate()` the rest is pretty easy!

- We already used `locate()` to fill in `add()`

- Let's use `locate()` to fill in `contains()` and `remove()`
Final OrderedVector Methods

```java
public boolean contains(E value) {
    int pos = locate(value);
    return pos < size() && data.get(pos).equals(value);
}

public Object remove (E value) {
    if (contains(value)) {
        int pos = locate(value);
        return data.remove(pos);
    }
    else {
        return null;
    }
}
```

These can be found in the structure5 OrderedVector class.
OrderedVector Performance

- Locate?
 - $O(\log n)$

- Add?
 - $O(n)$: locate is $O(\log n)$, but shifting items down is $O(n)$. So overall $O(n + \log n) = O(n)$.

- Contains?
 - $O(\log n)$ (just a call to locate and $O(1)$ extra work)

- Remove?
 - Like add: locate, and then remove (shifting items down as necessary); $O(n)$.
Let’s talk through how to implement an ordered Linked List (say a **SinglyLinkedList**).

How can we binary search in a singly linked list? What’s the challenge of doing so?

Idea of binary search: we compare the item we are searching for to the middle element in the range low...high (using a call to `get()`).
Locating in a Linked List

- How long does finding \texttt{get(mid)} take in a linked list?

- \(O(n)\) just to find \textit{one} mid item

- We can show: \(O(n)\) time for \texttt{locate()} in total

- \textbf{Takeaway:} ordering a linked list does not lead to faster search!

- The \texttt{OrderedList} class is still included in \texttt{structure5} however
A Note of Care About Ordered Structures

- This issue is common to all the structures we use that keep items in some order based on their contents.

- No good way around it.

- Problem: we need to assume that every time the objects change, their position in the OrderedVector is updated.

- Let's look at an example.
Sorting Students by Grade

• We can easily change the Student class to allow comparison by age

• Then we can store students in an ordered list by age

• Let’s look at an example

• What happens when the age changes?

• Answer: OrderedVector doesn’t know the age changes, so doesn’t stay sorted
An Example that *Does* Work

- Let’s store a list of associations between the population of a county and the percentage of people who voted third party in the 2020 election.

- So we’d like an `OrderedVector<Association<Integer, Double>>`

- Wait a minute—the `OrderedVector` can only store things that implement `Comparable`. But `Association` doesn’t implement `Comparable`.

- The type of the key—`Integer`—does implement `Comparable`, however.

- Enter: the `ComparableAssociation`. (Some of you may have used this in lab 5.)
ComparableAssociation summary

```java
public class ComparableAssociation<K extends Comparable<K>, V>
    extends Association<K, V>
    implements Comparable<ComparableAssociation<K, V>>, Map.Entry<K, V>
{
    public int compareTo(ComparableAssociation<K, V> that) {
        return this.getKey().compareTo(that.getKey());
    }
}
```

(This is an example of a class that implements two different interfaces. We’ll talk about Map.Entry in 3 or so weeks.)
Finishing Our Example

- We can store an `OrderedVector` of `ComparableAssociation<Integer, Double>`

- But, what happens when we change one of the `ComparableAssociations`?

- In particular, what happens when the *population* of one of the counties changes? (I.e. we change the key?)

- Answer: `ComparableAssociation` does not allow us to change the key!

- **Takeaway:** if you’re storing a class type in an ordered data structure, control access so that the sorted order cannot change
 - If possible
Binary Representation
How are numbers stored in a computer?

- Using binary!

- Set of 0s and 1s (32 for `int`, 64 for `long`)

- Let’s see some examples
Bit operations

- Sometimes in computer science it’s useful to operate on the bits of a number directly

- `<<` is left shift: shift the bits left (they fall off if run out of room)

- `>>` is right shift: shift the bits right (they fall off if run out of room)
 - Be careful with negative numbers!!!
 - What are these equivalent to mathematically?

- `&`: take the *bitwise and* of the two numbers
 - Go bit by bit. If both bits are 1, resulting bit is 1. Otherwise it is 0.
 - Example on board
 - Why would we use this?
Trees
Trees

- All the ways we’ve had to store data has been one-dimensional.
 - At the end of the day: every item in our data structure is the ith item in the data structure for some i
 - All of our access has (indirectly) been through such a one-dimensional mapping

- With trees, we add a second dimension to how we store data

- *Drastic* improvements in what we can store and the performance we can achieve
Trees We’ve Seen

We can draw the method calls made by a recursive algorithm using a tree! (The above is `canMakeSum()` from lab 3.)

Here: each of the rectangles above (called a node) represents a recursive call. We connect each method to the methods it calls.
Calling back to last lecture: what happens when we do binary search on this array? Something like: first, we compare our query element to 18. Based on the result, we then compare it to either 9 or 24.
Binary search seems to also have a tree-like structure. We’ll see how to store data in a very similar tree very soon.
Game Tree
Same basic idea. Though note: not quite a tree by our definition.
Definition of a Tree

- Tree consists of nodes (the boxes in the images we saw above)
- Nodes are connected by edges (lines in the images we saw above)
- There is one root node that does not have a parent node
- Every other node has exactly one parent node
- Nodes may have some children.
- A node without a child is called a leaf
Labelling nodes

What is the root node in this tree? What are the leaves?
Family “Tree”

Why isn’t this a tree?

- Answer: nodes have multiple parents! (Plus there are a bunch of extra edges in this image.)
Binary Tree
• **Binary Tree**: A tree where each node has at most 2 children.

• The *degree* of a node is the number of children it has. So a binary tree is a tree where all nodes have degree at most 2.

• Let’s see an example of a binary tree. Then, we’ll discuss the `BinaryTree` class that comes with `structure5`.
Expression Tree

We can write arithmetic expressions using a binary tree. (Why is it binary?)
Using a Binary Tree

- **Goal:** store an expression using a binary tree
- Then write some code to evaluate the expression
- **Takeaway:** practice with binary trees
How to Store a Binary Tree?

- Nodes should probably be objects of some class type.
- Store its children
- In the SinglyLinkedList, we had a hidden Node class; the SinglyLinkedList itself only stored a pointer to the head
- BinaryTree<E> does not work that way! Just a single recursive class
Visualizing Trees Recursively

Each node in a (binary) tree can be viewed as the root of its own (binary) tree.
BinaryTree plan

- Each node is stored as a BinaryTree object
- Stores the value stored at the node
- Stores the parent (of type BinaryTree)
 - The root of the tree stores null for its parent
- Stores the left and right children (both are of type BinaryTree)
 - If either doesn’t exist, points to an empty node
 - Children of an empty node point to the node itself
 - There are other ways to implement missing children in a binary tree; this is just one
- Let’s take a look at the code for BinaryTree
- Now, let’s look at how we can evaluate a tree of expressions stored in a BinaryTree