Trees (Intro)

Instructors: Sam McCauley and Dan Barowy
April 15, 2022
Admin

• Sign up to be a TA! Deadline next week.

• Any questions?
Trees
Trees

- All the ways we’ve had to store data has been one-dimensional.

 - At the end of the day: every item in our data structure is the \(i \)th item in the data structure for some \(i \)

 - All of our access has (indirectly) been through such a one-dimensional mapping

- With trees, we add a second dimension to how we store data

- **Draastic** improvements in what we can store and the performance we can achieve
We can draw the method calls made by a recursive algorithm using a tree! (The above is `canMakeSum()` from lab 3.)

Here: each of the rectangles above (called a `node`) represents a recursive call. We connect each method to the methods it calls.
Calling back to last lecture: what happens when we do binary search on this array?

Something like: first, we compare our query element to 18. Based on the result, we then compare it to either 9 or 24.
Binary search seems to also have a tree-like structure. We’ll see how to store data in a very similar tree very soon.
Same basic idea. Though note: not quite a tree by our definition.
Basic Tree Vocabulary

- Tree consists of nodes (the boxes in the images we saw above)
- Nodes are connected by edges (lines in the images we saw above)
- There is one root node that does not have a parent node
- Every other node has exactly one parent node
- Nodes may have some children.
- A node without a child is called a leaf
Labelling nodes

What is the root node in this tree? What are the leaves?
Why isn’t this a tree?

- Answer: nodes have multiple parents! (Plus there are some extra edges/different types of edges in this image.)
Binary Tree
Binary Tree

- **Binary Tree**: A tree where each node has at most 2 children

- The **degree** of a node is the number of children it has. So a binary tree is a tree where all nodes have degree at most 2.

- Let’s see an example of a binary tree. Then, we’ll discuss the `BinaryTree` class that comes with `structure5`
We can write arithmetic expressions using a binary tree. (Why is it binary?)
Using a Binary Tree

- **Goal**: store an expression using a binary tree
- Then: evaluate the expression
- **Takeaway**: practice with binary trees
How to Store a Binary Tree?

- Nodes should probably be objects of some class type.

- Store its children

- In the SinglyLinkedList, we had a hidden Node class; the SinglyLinkedList itself only stored a pointer to the head

- BinaryTree<E> does not work that way! Just a single recursive class
Visualizing Trees Recursively

Each node in a (binary) tree can be viewed as the root of its own (binary) tree.
BinaryTree plan

- Each node is stored as a BinaryTree object
- Stores the value stored at the node
- Stores the parent (of type BinaryTree)
 - The root of the tree stores null for its parent
- Stores the left and right children (both are of type BinaryTree)
 - If either doesn’t exist, points to an empty node (similar to dummy nodes)
 - Children of an empty node point to the node itself
 - There are other ways to implement missing children in a binary tree; this is just one
- Let’s take a look at the code for BinaryTree
- Now, let’s look at how we can evaluate a tree of expressions stored in a BinaryTree
More Binary Tree Vocabulary: Height

- The **size** of a tree is the number of nodes it contains.

- The **depth** of a node \(n \) is the number of edges between \(n \) and the root.

- The **height** of a tree is the largest height of any node in the tree.
Binary Tree Practice

• How can we calculate the size of a binary tree?

 • Hint: use recursion!

 • Let’s look at how the BinaryTree class implements this

• How can we calculate the depth of a binary tree?

 • Recursion again!

 • Let’s look at how this is implemented