Trees (Intro)

Instructors: Sam McCauley and Dan Barowy
April 15, 2022

Admin

e Sign up to be a TA! Deadline next week.

e Any questions?

Trees

Trees

o All the ways we've had to store data has been one-dimensional.

¢ At the end of the day: every item in our data structure is the ith item in the data
structure for some i

e All of our access has (indirectly) been through such a one-dimensional mapping

e With trees, we add a second dimension to how we store data

e Drastic improvements in what we can store and the performance we can
achieve

Trees We've Seen

({8):-3) ({8}:2) ({8}: 0] ({8}:5) ({8}:-2) ({8}: 3] ({8}):1) ({8}: 6]

We can draw the method calls made by a recursive algorithm using a tree! (The
above is canMakeSum() from lab 3.)

Here: each of the rectangles above (called a node) represents a recursive call. We
connect each method to the methods it calls.

Trees We've Seen

(5[912]18|22]24]30]

Calling back to last lecture: what happens when we do binary search on this array?

Something like: first, we compare our query element to 18. Based on the result, we
then compare it to either 9 or 24.

Trees We've Seen

15[9|12]18|22]24]30]

Binary search seems to also have a tree-like structure. We'll see how to store data
in a very similar tree very soon.

Game Tree

-y

X X
X
[//1T\\ VZRRRN
O O OlX| OX X é X é X XO X X
NN NANIN NN NN N NN

Family “Tree”

Great-great-

Grand- Great- ‘ (Flrsti')“c[?:sm
; !
mmherlffather auntiuncle removed
(First) cousin, nd
Nothing Mother Father Step-mother Nothing Auntiuncle once once
removed
. Step- Second i y
Brother/sister Me brother/sister ‘ (First) cousin ‘ cousin ‘ Third cousin
Half- Step- (First) cousin, Second Third cousin
Niece/nephew| Son/daughter iecel cousin, once once
nieceinephew g nieceinephew emoved removed
Grand- Step-grand- [F\rstt\:“lccoeusln cuussewﬁngvd\ce Tmrg’jg: =
i niece/nephew ! "
son/daughter emoved emoved removed

Same basic idea. Though note: not quite a tree by our definition.

Basic Tree Vocabulary

Tree consists of nodes (the boxes in the images we saw above)

Nodes are connected by edges (lines in the images we saw above)

There is one root node that does not have a parent node

Every other node has exactly one parent node

Nodes may have some children.

A node without a child is called a [eaf

Labelling nodes

({8}:-3) ({8): 2] ({8}: 0] ({8): 5] ({8}:-2) ({8}:3) ({8}: 1) ({8}: 6]

What is the root node in this tree? What are the leaves?

Family “Tree”

i

Great-
landmother/father

Grand- Great-
mother/father aunt/uncle
{First) cousin
Nothing Mother Father Step-mother Nothing Aunt/uncle

I

Second
cousin, once
removed

Step-
brother/sister

| (First) cousin

Second
cousin

‘ Third cousin

{Firs) cousin
once
smoved

nigce/nephew

Lo

{Firs cousin
iice

Step-grand-
niece/nephew

Why isn't this a tree?

Second
cousin, once
emoved

Second
cousin, twice
emoved

Third cousin
once
removed

Third cousin
twice
removed

e Answer: nodes have multiple parents! (Plus there are some extra

edges/different types of edges in this image.)

Binary Tree

Binary Tree

e Binary Tree: A tree where each node has at most 2 children

e The degree of a node is the number of children it has. So a binary tree is a
tree where all nodes have degree at most 2.

e Let's see an example of a binary tree. Then, we'll discuss the BinaryTree
class that comes with structureb

Expression Tree

We can write arithmetic expressions using a binary tree. (Why is it binary?)

Using a Binary Tree

e (GGoal: store an expression using a binary tree

e Then: evaluate the expression

e Takeaway: practice with binary trees

How to Store a Binary Tree?

Nodes should probably be objects of some class type.

Store its children

In the SinglyLinkedList, we had a hidden Node class; the SinglyLinkedList
itself only stored a pointer to the head

BinaryTree<E> does not work that way! Just a single recursive class

Visualizing Trees Recursively

Each node in a (binary) tree can be viewed as the root of its own (binary) tree.

BinaryTree plan

e Each node is stored as a BinaryTree object

e Stores the value stored at the node

e Stores the parent (of type BinaryTree)
e The root of the tree stores null for its parent

e Stores the left and right children (both are of type BinaryTree

o If either doesn’t exist, points to an empty node (similar to dummy nodes)

e Children of an empty node point to the node itself

e There are other ways to implement missing children in a binary tree; this is just
one

e Let's take a look at the code for BinaryTree

¢ Now, let’s look at how we can evaluate a tree of expressions stored in a

BinaryTree

More Binary Tree Vocabulary: Height

e The size of a tree is the number of nodes it contains

e The depth of a node n is the number of edges between n and the root.

e The height of a tree is the largest height of any node in the tree.

Binary Tree Practice

e How can we calculate the size of a binary tree?

e Hint: use recursion!

e Let’s look at how the BinaryTree class implements this

e How can we calculate the depth of a binary tree?

e Recursion again!

e Let’s look at how this is implemented

	Trees
	Binary Tree

