
Trees, Dictionaries, and Maps

Instructors: Sam McCauley and Dan Barowy

April 25, 2022



Admin

• Any questions?



Putting AVL trees together (from last week)

• Invariant: each node has balance −1, 0, or 1 (maintained through two rules for

rotations)

• The lowest number of nodes in an AVL tree of height h is w(h) ≥ (3/2)h

• Therefore, if an AVL tree has n nodes, then the height of the tree must satisfy

n ≥ (3/2)h, so h ≤ log3/2 n

• Therefore, h = O(log n)!

• As you may have seen elsewhere, if φ = (1+
√
5)/2 ≈ 1.62, then logφ n is a

much tighter bound.



Wrapping it Up

• AVL trees support add(), contains(), remove() (we didn’t talk about remove;

same idea but more complicated rules) all in O(log n) time

• Every other data structure we’ve seen requires at least O(n) time!

• So on a data structure with a billion items, requires ≈ 30 operations rather

than ≈ 1000000000.

• Incredible example of:

• How more intricate data structures can improve performance (past what seemed
possible)

• How simple invariants can lead to performance improvements

• How more-involved analysis can help us analyze complex data structures



Other Trees and Tree Operations



Red-black trees

• Another way to implement a

Balanced Binary Search Tree

• Some advantages; some

disadvantages in practice

compared to the AVL tree

• Also get O(log n)-time operations

• This is the balanced binary search

tree implemented in structure5



Predecessor and Successor Queries

• A predecessor query for an item v in a set of items returns the largest v′

satisfying v′ ≤ v

• So if an item is located in the set, a predecessor query is equivalent to a
contains() query

• A successor query for an item v in a set of items returns the smallest v′

satisfying v′ ≥ v

• How can we implement these queries in a Binary Search Tree?



Predecessor Queries

• If query is larger than root, set the root as the current best predecessor. Then,

search in right subtree.

• If query is smaller than root, recurse in left subtree

• If reach an empty node, return the stored predecessor

• What’s the invariant of this approach?

• The predecessor of the query is either the stored best predecessor, or in the
subtree being searched

• How can we prove this?

• Running time on a BBST?

• O(log n)



Range Queries

• Let’s say we want to find all entries between two elements q1 and q2

• Say: “find all students with names in this range” or “find all companies with

number of employees in this range” (very common type of database query)

• Let’s say there are k entries in the range, and our data structure is of size n.

Let’s calculate performance in terms of n and k

• How long does this query take on an unsorted Vector?

• O(n)

• What about a sorted Vector?

• O(k + log n): binary search for q1; list entries until q2

• What about a BBST?

• Also O(k + log n). (Essentially: search for q1; do a careful traversal to q2.)



Dictionaries and Maps



Dictionary data structure

• Store data associated with a set of keys

• Goal: for a given key, want to be able to look up the associated data (which we

call a value)

• For example: let’s say we have a list of words. We want to be able to look up
the definition of any word.

• keys are the words

• definitions are the values

• For Google: given a keyword, find all websites that contain that keyword

• Given a course name, find the list of all students that are taking that course

• Given a k-gram, find its FrequencyList



Dictionary methods

• method contains(key) returns a boolean

• method getValue(key) should get the value associated with a key

• Want to be able to update dictionary: add(key, value) and delete(key,

value)

• Each key should appear once. (Why?)

• Unambiguous lookup! If a query a key, I should know exactly what value I’m
getting



Dictionaries We’ve Seen

• Unordered vector: O(1) add, O(n) delete, contains, getValue

• Ordered vector: O(n) add, O(n) delete, O(log n) contains, getValue

• Balanced Binary Search Tree (i.e. AVL trees): O(log n) for all operations

• And can also do predecessor, successor, range queries efficiently



A Dictionary Interface: Map

• Let’s take a look at the Map interface

• (Map and Dictionary are essentially synonyms. The interface just happens to

be called Map.)



Main Map Interface Methods

• int size() – returns number of entries in map

• boolean isEmpty() – true if there are no entries

• void clear() – remove all entries from map

• boolean containsKey(K key) – true if key exists in map

• boolean containsValue(V val) – true if val exists at least once in map

• V get(K key) – get value associated with key

• V put(K key, V val) – insert mapping from key to val, returns value

replaced (old value) or null

• V remove(K key) – remove mapping from key to val



Other Map Interface Methods

• void putAll(Map<K,V> other) – puts all key-value pairs from an existing

Map into the current map

• Set<K> keySet() – return set of keys in map

• Structure<V> valueSet() – return collection of values

• Set<Association<K,V>> entrySet() – return set of key-value pairs from

map

• boolean equals() – true if two maps are entrywise equal

• int hashCode() – returns hash code associated with values in map (stay

tuned...)



Simple Map implementation: MapList

• Implements a Map using a singly linked list

• How do you think get(K key) works?

• How about put(K key, V val)?

• What is the running time?

• O(n) /

• How fast can we get these operations implemented?

• O(log n) using a BBST

• Is that optimal?



Hash Codes and Hash Tables



Hash Tables

• Hash tables can add an locate objects in roughly O(1) time!!!

• Later this week we’ll see why O(1) is a bit of a fuzzy claim

• Let’s look at a real-world example to help us think through the hash table

strategy



Example from Bailey

“ We head to a local appliance store to pick up a new freezer. When we arrive,

the clerk asks us for the last two digits of our home telephone number! Only

then does the clerk ask for our last name. Armed with that information, the

clerk walks directly to a bin in a warehouse of hundreds of appliances and

comes back with the freezer in tow. ”



Example from Bailey



Example from Bailey



Example from Bailey



Example from Bailey

“ We head to a local appliance store to pick up a new freezer. When we arrive,

the clerk asks us for the last two digits of our home telephone number! Only

then does the clerk ask for our last name. Armed with that information, the

clerk walks directly to a bin in a warehouse of hundreds of appliances and

comes back with the freezer in tow. ”
• How does this relate to the Map interface?

• What is the Key? What is the Value?

• Why those choices?

• Are names evenly distributed?

• Are the last 2 phone digits evenly distributed?



Hashing in a Nutshell

• Assign objects to “bins” based on key

• When searching for an object, jump directly to the appropriate bin (and ignore

the rest)

• If there are multiple objects assigned to the target bin, then search for the

right object

• Important Insight: Hashing works best when objects are evenly distributed

among bins

• Phone numbers are randomly assigned, last names are not!



Implementing a Hash Table

• How can we represent bins?

• Slots in an array! (We’ll talk about how to grow later.)

• How do we find a key’s bin?

• We use a hash function that converts keys (of type K) into ints

• In Java, all Objects have a method public int hashCode()



hashCode() properties

• Return type int

• Hashing function is one way:

• Can convert a key into a hashCode

• May not be able to convert a hashCode into a key

• Hashing function is deterministic



Hash Code Rules

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#hashCode()

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#hashCode()


Implementing HashTable

• hashCode() allows us to jump directly to the bin for a particular key object

• How do we add Associations to our array?

• Problem 1: hashCode() yields an int, but our array may be relatively small.

• How do we convert arbitrary ints to array locations?

• Problem 2: We can represent 232 unique int, but there may be infinitely many

values that an object can take on (e.g., String).

• By the pigeonhole principle, some Strings will have to “share” a hashcode!



Fitting Items Into Array

• Use mod (in Java: %) to map the object to an array index

• Something like:

• array[o.hashCode() % array.length] = o;

• That way, every object fits to some slot in our array using its hash code



Objects with the same hashcode

• If two objects map to the same slot in the array (after taking mod of the

hashcode), it is called a collision

• Could be two objects with the same hashcode, or two objects with different

hash codes that map to the same slot

• Can we guarantee that collisions can’t happen?

• No: for any hash code we write, some pairs of objects will have a collision

• Instead: create a strategy for storing items (extending the “mod” idea above)

that can handle collisions!



On Wednesday

• See how to store items that share the same hashcode

• We’ll talk a little bit about analysis


	Other Trees and Tree Operations
	Dictionaries and Maps
	Hash Codes and Hash Tables

