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Admin

• Sign up to be a TA! Deadline Friday

• Masks for now in class

• Any questions?



Let’s look at last week’s quiz



Binary Tree



Binary Tree

• Binary Tree: A tree where each node has at most 2 children

• The degree of a node is the number of children it has. So a binary tree is a

tree where all nodes have degree at most 2.

• Let’s see an example of a binary tree. Then, we’ll discuss the BinaryTree

class that comes with structure5



BinaryTree plan

• Each node is stored as a BinaryTree object

• Stores the value stored at the node

• Stores the parent (of type BinaryTree)

• The root of the tree stores null for its parent

• Stores the left and right children (both are of type BinaryTree

• If either doesn’t exist, points to an empty node (similar to dummy nodes)
• Children of an empty node point to the node itself
• There are other ways to implement missing children in a binary tree; this is just
one

• Let’s take a look at the code for BinaryTree

• Now, let’s look at how we can evaluate a tree of expressions stored in a

BinaryTree
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More Binary Tree Vocabulary: Height

• The size of a tree is the number of nodes it contains

• The depth of a node n is the number of edges between n and the root.

• The height of a tree is the largest depth of any node in the tree.
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Binary Tree Practice

• How can we calculate the size of a binary tree?

• Hint: use recursion!

• Let’s look at how the BinaryTree class implements this

• How can we calculate the height of a binary tree?

• Recursion again!

• Let’s look at how this is implemented



Binary Tree Practice

• How can we calculate the size of a binary tree?

• Hint: use recursion!

• Let’s look at how the BinaryTree class implements this

• How can we calculate the height of a binary tree?

• Recursion again!

• Let’s look at how this is implemented



Binary Tree Practice

• How can we calculate the size of a binary tree?

• Hint: use recursion!

• Let’s look at how the BinaryTree class implements this

• How can we calculate the height of a binary tree?

• Recursion again!

• Let’s look at how this is implemented



Binary Tree Practice

• How can we calculate the size of a binary tree?

• Hint: use recursion!

• Let’s look at how the BinaryTree class implements this

• How can we calculate the height of a binary tree?

• Recursion again!

• Let’s look at how this is implemented



Binary Tree Practice

• How can we calculate the size of a binary tree?

• Hint: use recursion!

• Let’s look at how the BinaryTree class implements this

• How can we calculate the height of a binary tree?

• Recursion again!

• Let’s look at how this is implemented



Binary Tree Practice

• How can we calculate the size of a binary tree?

• Hint: use recursion!

• Let’s look at how the BinaryTree class implements this

• How can we calculate the height of a binary tree?

• Recursion again!

• Let’s look at how this is implemented



Correctness on Trees



Proving Algorithms Correct

• How can we prove that one of these algorithms is correct? (Let’s say the

size() method.)

• It’s a recursive algorithm, so: induction!

• Let’s show that size() correctly returns the number of nodes in the tree using

induction.

• What should our induction be on?

• The number of nodes in the tree

• To show: for any tree with n ≥ 0 nodes, size() correctly returns n.

• Do we want strong induction or weak induction? What will our proof look like?

• Answer: strong induction. When proving correctness for a method call of size

n+ 1, the recursive calls may be on a tree of size less than n.
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Base case

• n = 0

• That means the root node is empty

• So size returns 0 correctly.
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Inductive Hypothesis

• Let’s look back at what we’re trying to prove. (This often helps fill in the

inductive hypothesis.)

• I.H. (strong induction): There exists some n such that for all k from 0 to n,

size() returns k correctly on all trees of size k.
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Inductive step

• Let’s look at a tree of size n+ 1 with root i. Every node in the tree rooted at i is

in the tree rooted at the left child, or in the tree rooted at the right child, or i

itself.

• size() returns left.size() + right.size() + 1

• The left child and right child both have size < n+ 1. Therefore, both

left.size() and right.size() correctly return the size of the subtree

• Putting these together, size() returns the size of the tree correctly.
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Induction on Trees

• You’ll typically want to use strong induction

• Induction is often on the size or height of the tree

• Inductive proofs map very closely to correct recursive algorithms



Induction on Trees

• You’ll typically want to use strong induction

• Induction is often on the size or height of the tree

• Inductive proofs map very closely to correct recursive algorithms



Induction on Trees

• You’ll typically want to use strong induction

• Induction is often on the size or height of the tree

• Inductive proofs map very closely to correct recursive algorithms



Iterating Over Trees



Goal

18

9

5 12

24

22 30

29 35

• Let’s say I want to iterate through

each of the items in my tree, one at

a time

• In what order should I go through
the nodes?

• We say that we traverse the tree

• We’ll see four different methods of

traversing a tree today

• Any ideas?
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Pre-order traversal

• Pre-order traversal: First we visit the root. Then, we recursively traverse its left

child. Then, we recursively traverse its right child.

• Let’s see an example
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Pre-order Traversal
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Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.
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Post-order traversal

• Post-order traversal: First, we recursively traverse the left child of the root.

Then, we recursively traverse its right child. Finally, we visit the root.

• Note that pre- vs post- refers to when we visit the root

• Let’s see an example
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In-order traversal

• In-order traversal: First, we recursively traverse the left child of the root. Then,

we visit the root. Then, we recursively traverse its right child.

• Visually: in-order scans the tree from left to right.

• This is just a mnemonic! The tree traversal depends on its edges, not the way it’s
drawn.

• Let’s see an example
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Level-order traversal

• Level-order traversal: We visit all nodes at the same depth from left to right

• Unlike the other traversals, doesn’t recursively order the children vs the root

• Let’s see an example



Level-order traversal

• Level-order traversal: We visit all nodes at the same depth from left to right

• Unlike the other traversals, doesn’t recursively order the children vs the root

• Let’s see an example



Level-order traversal

• Level-order traversal: We visit all nodes at the same depth from left to right

• Unlike the other traversals, doesn’t recursively order the children vs the root

• Let’s see an example



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.
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• We saw how to evaluate an

expression tree.

• We had to traverse all of the tree to

evaluate the expression. What kind

of traversal was that?
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Tree Iterators



Implementing Tree Iterators

• Goal: implement the traversals above as an iterator

• Can do next() and hasNext() on demand

• Problem: want to get values on demand (should be updated as the tree is
updated)

• Don’t want to traverse the tree, store all tree values, and then dispense them one
by one

• Instead: each call to next() should go to the next node in the tree we want to
output

• Challenge: implementing a recursive traversal piece-by-piece

• To think about: what data structure helps with recursion?
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• Nice idea, but it takes some care. Let’s be a
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• hasNext(): return if the stack is nonempty
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visited their parents

• So the first parents to be visited have the first children that are visited

• . . . Can we use a queue?
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• hasNext(): return if queue is empty
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