
Tree Traversals

Instructors: Sam McCauley and Dan Barowy

April 19, 2022



Admin

• Sign up to be a TA! Deadline Friday

• Masks for now in class

• Any questions?



Let’s look at last week’s quiz



Binary Tree



Binary Tree

• Binary Tree: A tree where each node has at most 2 children

• The degree of a node is the number of children it has. So a binary tree is a

tree where all nodes have degree at most 2.

• Let’s see an example of a binary tree. Then, we’ll discuss the BinaryTree

class that comes with structure5



BinaryTree plan

• Each node is stored as a BinaryTree object

• Stores the value stored at the node

• Stores the parent (of type BinaryTree)

• The root of the tree stores null for its parent

• Stores the left and right children (both are of type BinaryTree

• If either doesn’t exist, points to an empty node (similar to dummy nodes)
• Children of an empty node point to the node itself
• There are other ways to implement missing children in a binary tree; this is just
one

• Let’s take a look at the code for BinaryTree

• Now, let’s look at how we can evaluate a tree of expressions stored in a

BinaryTree



BinaryTree plan

• Each node is stored as a BinaryTree object

• Stores the value stored at the node

• Stores the parent (of type BinaryTree)

• The root of the tree stores null for its parent

• Stores the left and right children (both are of type BinaryTree

• If either doesn’t exist, points to an empty node (similar to dummy nodes)
• Children of an empty node point to the node itself
• There are other ways to implement missing children in a binary tree; this is just
one

• Let’s take a look at the code for BinaryTree

• Now, let’s look at how we can evaluate a tree of expressions stored in a

BinaryTree



BinaryTree plan

• Each node is stored as a BinaryTree object

• Stores the value stored at the node

• Stores the parent (of type BinaryTree)

• The root of the tree stores null for its parent

• Stores the left and right children (both are of type BinaryTree

• If either doesn’t exist, points to an empty node (similar to dummy nodes)
• Children of an empty node point to the node itself
• There are other ways to implement missing children in a binary tree; this is just
one

• Let’s take a look at the code for BinaryTree

• Now, let’s look at how we can evaluate a tree of expressions stored in a

BinaryTree



BinaryTree plan

• Each node is stored as a BinaryTree object

• Stores the value stored at the node

• Stores the parent (of type BinaryTree)

• The root of the tree stores null for its parent

• Stores the left and right children (both are of type BinaryTree

• If either doesn’t exist, points to an empty node (similar to dummy nodes)
• Children of an empty node point to the node itself
• There are other ways to implement missing children in a binary tree; this is just
one

• Let’s take a look at the code for BinaryTree

• Now, let’s look at how we can evaluate a tree of expressions stored in a

BinaryTree



BinaryTree plan

• Each node is stored as a BinaryTree object

• Stores the value stored at the node

• Stores the parent (of type BinaryTree)

• The root of the tree stores null for its parent

• Stores the left and right children (both are of type BinaryTree

• If either doesn’t exist, points to an empty node (similar to dummy nodes)
• Children of an empty node point to the node itself
• There are other ways to implement missing children in a binary tree; this is just
one

• Let’s take a look at the code for BinaryTree

• Now, let’s look at how we can evaluate a tree of expressions stored in a

BinaryTree



BinaryTree plan

• Each node is stored as a BinaryTree object

• Stores the value stored at the node

• Stores the parent (of type BinaryTree)

• The root of the tree stores null for its parent

• Stores the left and right children (both are of type BinaryTree

• If either doesn’t exist, points to an empty node (similar to dummy nodes)
• Children of an empty node point to the node itself
• There are other ways to implement missing children in a binary tree; this is just
one

• Let’s take a look at the code for BinaryTree

• Now, let’s look at how we can evaluate a tree of expressions stored in a

BinaryTree



More Binary Tree Vocabulary: Height

• The size of a tree is the number of nodes it contains

• The depth of a node n is the number of edges between n and the root.

• The height of a tree is the largest depth of any node in the tree.



More Binary Tree Vocabulary: Height

• The size of a tree is the number of nodes it contains

• The depth of a node n is the number of edges between n and the root.

• The height of a tree is the largest depth of any node in the tree.



More Binary Tree Vocabulary: Height

• The size of a tree is the number of nodes it contains

• The depth of a node n is the number of edges between n and the root.

• The height of a tree is the largest depth of any node in the tree.



Binary Tree Practice

• How can we calculate the size of a binary tree?

• Hint: use recursion!

• Let’s look at how the BinaryTree class implements this

• How can we calculate the height of a binary tree?

• Recursion again!

• Let’s look at how this is implemented



Binary Tree Practice

• How can we calculate the size of a binary tree?

• Hint: use recursion!

• Let’s look at how the BinaryTree class implements this

• How can we calculate the height of a binary tree?

• Recursion again!

• Let’s look at how this is implemented



Binary Tree Practice

• How can we calculate the size of a binary tree?

• Hint: use recursion!

• Let’s look at how the BinaryTree class implements this

• How can we calculate the height of a binary tree?

• Recursion again!

• Let’s look at how this is implemented



Binary Tree Practice

• How can we calculate the size of a binary tree?

• Hint: use recursion!

• Let’s look at how the BinaryTree class implements this

• How can we calculate the height of a binary tree?

• Recursion again!

• Let’s look at how this is implemented



Binary Tree Practice

• How can we calculate the size of a binary tree?

• Hint: use recursion!

• Let’s look at how the BinaryTree class implements this

• How can we calculate the height of a binary tree?

• Recursion again!

• Let’s look at how this is implemented



Binary Tree Practice

• How can we calculate the size of a binary tree?

• Hint: use recursion!

• Let’s look at how the BinaryTree class implements this

• How can we calculate the height of a binary tree?

• Recursion again!

• Let’s look at how this is implemented



Correctness on Trees



Proving Algorithms Correct

• How can we prove that one of these algorithms is correct? (Let’s say the

size() method.)

• It’s a recursive algorithm, so: induction!

• Let’s show that size() correctly returns the number of nodes in the tree using

induction.

• What should our induction be on?

• The number of nodes in the tree

• To show: for any tree with n ≥ 0 nodes, size() correctly returns n.

• Do we want strong induction or weak induction? What will our proof look like?

• Answer: strong induction. When proving correctness for a method call of size

n+ 1, the recursive calls may be on a tree of size less than n.



Proving Algorithms Correct

• How can we prove that one of these algorithms is correct? (Let’s say the

size() method.)

• It’s a recursive algorithm, so: induction!

• Let’s show that size() correctly returns the number of nodes in the tree using

induction.

• What should our induction be on?

• The number of nodes in the tree

• To show: for any tree with n ≥ 0 nodes, size() correctly returns n.

• Do we want strong induction or weak induction? What will our proof look like?

• Answer: strong induction. When proving correctness for a method call of size

n+ 1, the recursive calls may be on a tree of size less than n.



Proving Algorithms Correct

• How can we prove that one of these algorithms is correct? (Let’s say the

size() method.)

• It’s a recursive algorithm, so: induction!

• Let’s show that size() correctly returns the number of nodes in the tree using

induction.

• What should our induction be on?

• The number of nodes in the tree

• To show: for any tree with n ≥ 0 nodes, size() correctly returns n.

• Do we want strong induction or weak induction? What will our proof look like?

• Answer: strong induction. When proving correctness for a method call of size

n+ 1, the recursive calls may be on a tree of size less than n.



Proving Algorithms Correct

• How can we prove that one of these algorithms is correct? (Let’s say the

size() method.)

• It’s a recursive algorithm, so: induction!

• Let’s show that size() correctly returns the number of nodes in the tree using

induction.

• What should our induction be on?

• The number of nodes in the tree

• To show: for any tree with n ≥ 0 nodes, size() correctly returns n.

• Do we want strong induction or weak induction? What will our proof look like?

• Answer: strong induction. When proving correctness for a method call of size

n+ 1, the recursive calls may be on a tree of size less than n.



Proving Algorithms Correct

• How can we prove that one of these algorithms is correct? (Let’s say the

size() method.)

• It’s a recursive algorithm, so: induction!

• Let’s show that size() correctly returns the number of nodes in the tree using

induction.

• What should our induction be on?

• The number of nodes in the tree

• To show: for any tree with n ≥ 0 nodes, size() correctly returns n.

• Do we want strong induction or weak induction? What will our proof look like?

• Answer: strong induction. When proving correctness for a method call of size

n+ 1, the recursive calls may be on a tree of size less than n.



Proving Algorithms Correct

• How can we prove that one of these algorithms is correct? (Let’s say the

size() method.)

• It’s a recursive algorithm, so: induction!

• Let’s show that size() correctly returns the number of nodes in the tree using

induction.

• What should our induction be on?

• The number of nodes in the tree

• To show: for any tree with n ≥ 0 nodes, size() correctly returns n.

• Do we want strong induction or weak induction? What will our proof look like?

• Answer: strong induction. When proving correctness for a method call of size

n+ 1, the recursive calls may be on a tree of size less than n.



Proving Algorithms Correct

• How can we prove that one of these algorithms is correct? (Let’s say the

size() method.)

• It’s a recursive algorithm, so: induction!

• Let’s show that size() correctly returns the number of nodes in the tree using

induction.

• What should our induction be on?

• The number of nodes in the tree

• To show: for any tree with n ≥ 0 nodes, size() correctly returns n.

• Do we want strong induction or weak induction? What will our proof look like?

• Answer: strong induction. When proving correctness for a method call of size

n+ 1, the recursive calls may be on a tree of size less than n.



Proving Algorithms Correct

• How can we prove that one of these algorithms is correct? (Let’s say the

size() method.)

• It’s a recursive algorithm, so: induction!

• Let’s show that size() correctly returns the number of nodes in the tree using

induction.

• What should our induction be on?

• The number of nodes in the tree

• To show: for any tree with n ≥ 0 nodes, size() correctly returns n.

• Do we want strong induction or weak induction? What will our proof look like?

• Answer: strong induction. When proving correctness for a method call of size

n+ 1, the recursive calls may be on a tree of size less than n.



Base case

• n = 0

• That means the root node is empty

• So size returns 0 correctly.



Base case

• n = 0

• That means the root node is empty

• So size returns 0 correctly.



Base case

• n = 0

• That means the root node is empty

• So size returns 0 correctly.



Inductive Hypothesis

• Let’s look back at what we’re trying to prove. (This often helps fill in the

inductive hypothesis.)

• I.H. (strong induction): There exists some n such that for all k from 0 to n,

size() returns k correctly on all trees of size k.



Inductive Hypothesis

• Let’s look back at what we’re trying to prove. (This often helps fill in the

inductive hypothesis.)

• I.H. (strong induction): There exists some n such that for all k from 0 to n,

size() returns k correctly on all trees of size k.



Inductive step

• Let’s look at a tree of size n+ 1 with root i. Every node in the tree rooted at i is

in the tree rooted at the left child, or in the tree rooted at the right child, or i

itself.

• size() returns left.size() + right.size() + 1

• The left child and right child both have size < n+ 1. Therefore, both

left.size() and right.size() correctly return the size of the subtree

• Putting these together, size() returns the size of the tree correctly.



Inductive step

• Let’s look at a tree of size n+ 1 with root i. Every node in the tree rooted at i is

in the tree rooted at the left child, or in the tree rooted at the right child, or i

itself.

• size() returns left.size() + right.size() + 1

• The left child and right child both have size < n+ 1. Therefore, both

left.size() and right.size() correctly return the size of the subtree

• Putting these together, size() returns the size of the tree correctly.



Inductive step

• Let’s look at a tree of size n+ 1 with root i. Every node in the tree rooted at i is

in the tree rooted at the left child, or in the tree rooted at the right child, or i

itself.

• size() returns left.size() + right.size() + 1

• The left child and right child both have size < n+ 1. Therefore, both

left.size() and right.size() correctly return the size of the subtree

• Putting these together, size() returns the size of the tree correctly.



Inductive step

• Let’s look at a tree of size n+ 1 with root i. Every node in the tree rooted at i is

in the tree rooted at the left child, or in the tree rooted at the right child, or i

itself.

• size() returns left.size() + right.size() + 1

• The left child and right child both have size < n+ 1. Therefore, both

left.size() and right.size() correctly return the size of the subtree

• Putting these together, size() returns the size of the tree correctly.



Induction on Trees

• You’ll typically want to use strong induction

• Induction is often on the size or height of the tree

• Inductive proofs map very closely to correct recursive algorithms



Induction on Trees

• You’ll typically want to use strong induction

• Induction is often on the size or height of the tree

• Inductive proofs map very closely to correct recursive algorithms



Induction on Trees

• You’ll typically want to use strong induction

• Induction is often on the size or height of the tree

• Inductive proofs map very closely to correct recursive algorithms



Iterating Over Trees



Goal

18

9

5 12

24

22 30

29 35

• Let’s say I want to iterate through

each of the items in my tree, one at

a time

• In what order should I go through
the nodes?

• We say that we traverse the tree

• We’ll see four different methods of

traversing a tree today

• Any ideas?



Goal

18

9

5 12

24

22 30

29 35

• Let’s say I want to iterate through

each of the items in my tree, one at

a time

• In what order should I go through
the nodes?

• We say that we traverse the tree

• We’ll see four different methods of

traversing a tree today

• Any ideas?



Goal

18

9

5 12

24

22 30

29 35

• Let’s say I want to iterate through

each of the items in my tree, one at

a time

• In what order should I go through
the nodes?

• We say that we traverse the tree

• We’ll see four different methods of

traversing a tree today

• Any ideas?



Goal

18

9

5 12

24

22 30

29 35

• Let’s say I want to iterate through

each of the items in my tree, one at

a time

• In what order should I go through
the nodes?

• We say that we traverse the tree

• We’ll see four different methods of

traversing a tree today

• Any ideas?



Goal

18

9

5 12

24

22 30

29 35

• Let’s say I want to iterate through

each of the items in my tree, one at

a time

• In what order should I go through
the nodes?

• We say that we traverse the tree

• We’ll see four different methods of

traversing a tree today

• Any ideas?



Pre-order traversal

• Pre-order traversal: First we visit the root. Then, we recursively traverse its left

child. Then, we recursively traverse its right child.

• Let’s see an example



Pre-order traversal

• Pre-order traversal: First we visit the root. Then, we recursively traverse its left

child. Then, we recursively traverse its right child.

• Let’s see an example



Pre-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Pre-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Pre-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Pre-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Pre-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Pre-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Pre-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Pre-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Pre-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Pre-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Pre-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Post-order traversal

• Post-order traversal: First, we recursively traverse the left child of the root.

Then, we recursively traverse its right child. Finally, we visit the root.

• Note that pre- vs post- refers to when we visit the root

• Let’s see an example



Post-order traversal

• Post-order traversal: First, we recursively traverse the left child of the root.

Then, we recursively traverse its right child. Finally, we visit the root.

• Note that pre- vs post- refers to when we visit the root

• Let’s see an example



Post-order traversal

• Post-order traversal: First, we recursively traverse the left child of the root.

Then, we recursively traverse its right child. Finally, we visit the root.

• Note that pre- vs post- refers to when we visit the root

• Let’s see an example



Post-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Post-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Post-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Post-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Post-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Post-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Post-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Post-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Post-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Post-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Post-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



In-order traversal

• In-order traversal: First, we recursively traverse the left child of the root. Then,

we visit the root. Then, we recursively traverse its right child.

• Visually: in-order scans the tree from left to right.

• This is just a mnemonic! The tree traversal depends on its edges, not the way it’s
drawn.

• Let’s see an example



In-order traversal

• In-order traversal: First, we recursively traverse the left child of the root. Then,

we visit the root. Then, we recursively traverse its right child.

• Visually: in-order scans the tree from left to right.

• This is just a mnemonic! The tree traversal depends on its edges, not the way it’s
drawn.

• Let’s see an example



In-order traversal

• In-order traversal: First, we recursively traverse the left child of the root. Then,

we visit the root. Then, we recursively traverse its right child.

• Visually: in-order scans the tree from left to right.

• This is just a mnemonic! The tree traversal depends on its edges, not the way it’s
drawn.

• Let’s see an example



In-order traversal

• In-order traversal: First, we recursively traverse the left child of the root. Then,

we visit the root. Then, we recursively traverse its right child.

• Visually: in-order scans the tree from left to right.

• This is just a mnemonic! The tree traversal depends on its edges, not the way it’s
drawn.

• Let’s see an example



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order traversal

• Level-order traversal: We visit all nodes at the same depth from left to right

• Unlike the other traversals, doesn’t recursively order the children vs the root

• Let’s see an example



Level-order traversal

• Level-order traversal: We visit all nodes at the same depth from left to right

• Unlike the other traversals, doesn’t recursively order the children vs the root

• Let’s see an example



Level-order traversal

• Level-order traversal: We visit all nodes at the same depth from left to right

• Unlike the other traversals, doesn’t recursively order the children vs the root

• Let’s see an example



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



A Question

+

×

4 2

3

• We saw how to evaluate an

expression tree.

• We had to traverse all of the tree to

evaluate the expression. What kind

of traversal was that?



A Question

+

×

4 2

3

• We saw how to evaluate an

expression tree.

• We had to traverse all of the tree to

evaluate the expression. What kind

of traversal was that?



Tree Iterators



Implementing Tree Iterators

• Goal: implement the traversals above as an iterator

• Can do next() and hasNext() on demand

• Problem: want to get values on demand (should be updated as the tree is
updated)

• Don’t want to traverse the tree, store all tree values, and then dispense them one
by one

• Instead: each call to next() should go to the next node in the tree we want to
output

• Challenge: implementing a recursive traversal piece-by-piece

• To think about: what data structure helps with recursion?



Implementing Tree Iterators

• Goal: implement the traversals above as an iterator

• Can do next() and hasNext() on demand

• Problem: want to get values on demand (should be updated as the tree is
updated)

• Don’t want to traverse the tree, store all tree values, and then dispense them one
by one

• Instead: each call to next() should go to the next node in the tree we want to
output

• Challenge: implementing a recursive traversal piece-by-piece

• To think about: what data structure helps with recursion?



Implementing Tree Iterators

• Goal: implement the traversals above as an iterator

• Can do next() and hasNext() on demand

• Problem: want to get values on demand (should be updated as the tree is
updated)

• Don’t want to traverse the tree, store all tree values, and then dispense them one
by one

• Instead: each call to next() should go to the next node in the tree we want to
output

• Challenge: implementing a recursive traversal piece-by-piece

• To think about: what data structure helps with recursion?



Implementing Tree Iterators

• Goal: implement the traversals above as an iterator

• Can do next() and hasNext() on demand

• Problem: want to get values on demand (should be updated as the tree is
updated)

• Don’t want to traverse the tree, store all tree values, and then dispense them one
by one

• Instead: each call to next() should go to the next node in the tree we want to
output

• Challenge: implementing a recursive traversal piece-by-piece

• To think about: what data structure helps with recursion?



Implementing Tree Iterators

• Goal: implement the traversals above as an iterator

• Can do next() and hasNext() on demand

• Problem: want to get values on demand (should be updated as the tree is
updated)

• Don’t want to traverse the tree, store all tree values, and then dispense them one
by one

• Instead: each call to next() should go to the next node in the tree we want to
output

• Challenge: implementing a recursive traversal piece-by-piece

• To think about: what data structure helps with recursion?



Implementing Tree Iterators

• Goal: implement the traversals above as an iterator

• Can do next() and hasNext() on demand

• Problem: want to get values on demand (should be updated as the tree is
updated)

• Don’t want to traverse the tree, store all tree values, and then dispense them one
by one

• Instead: each call to next() should go to the next node in the tree we want to
output

• Challenge: implementing a recursive traversal piece-by-piece

• To think about: what data structure helps with recursion?



Implementing Tree Iterators

• Goal: implement the traversals above as an iterator

• Can do next() and hasNext() on demand

• Problem: want to get values on demand (should be updated as the tree is
updated)

• Don’t want to traverse the tree, store all tree values, and then dispense them one
by one

• Instead: each call to next() should go to the next node in the tree we want to
output

• Challenge: implementing a recursive traversal piece-by-piece

• To think about: what data structure helps with recursion?



Pre-order traversal

18

9

5 12

24

22 30

29 35

• Visits the node, then recursively

traverses the left child, then the

right child

• Keep track of the current node

we’re traversing

• What happens when we hit a leaf?

• Could backtrack by following

pointers; might get confusing

• Instead: maintain nodes to visit on

a stack!



Pre-order traversal

18

9

5 12

24

22 30

29 35

• Visits the node, then recursively

traverses the left child, then the

right child

• Keep track of the current node

we’re traversing

• What happens when we hit a leaf?

• Could backtrack by following

pointers; might get confusing

• Instead: maintain nodes to visit on

a stack!



Pre-order traversal

18

9

5 12

24

22 30

29 35

• Visits the node, then recursively

traverses the left child, then the

right child

• Keep track of the current node

we’re traversing

• What happens when we hit a leaf?

• Could backtrack by following

pointers; might get confusing

• Instead: maintain nodes to visit on

a stack!



Pre-order traversal

18

9

5 12

24

22 30

29 35

• Visits the node, then recursively

traverses the left child, then the

right child

• Keep track of the current node

we’re traversing

• What happens when we hit a leaf?

• Could backtrack by following

pointers; might get confusing

• Instead: maintain nodes to visit on

a stack!



Pre-order traversal

18

9

5 12

24

22 30

29 35

• Visits the node, then recursively

traverses the left child, then the

right child

• Keep track of the current node

we’re traversing

• What happens when we hit a leaf?

• Could backtrack by following

pointers; might get confusing

• Instead: maintain nodes to visit on

a stack!



Pre-order traversal

• Stack maintains the non-empty BinaryTree<E> objects that we still need to

traverse

• So next():

• pops the top item off the stack

• Stores its value to be returned

• Pushes its right child onto the stack if nonempty

• Pushes its left child onto the stack if nonempty

• hasNext()?

• Just returns if the stack is empty



Pre-order traversal

• Stack maintains the non-empty BinaryTree<E> objects that we still need to

traverse

• So next():

• pops the top item off the stack

• Stores its value to be returned

• Pushes its right child onto the stack if nonempty

• Pushes its left child onto the stack if nonempty

• hasNext()?

• Just returns if the stack is empty



Pre-order traversal

• Stack maintains the non-empty BinaryTree<E> objects that we still need to

traverse

• So next():

• pops the top item off the stack

• Stores its value to be returned

• Pushes its right child onto the stack if nonempty

• Pushes its left child onto the stack if nonempty

• hasNext()?

• Just returns if the stack is empty



Pre-order traversal

• Stack maintains the non-empty BinaryTree<E> objects that we still need to

traverse

• So next():

• pops the top item off the stack

• Stores its value to be returned

• Pushes its right child onto the stack if nonempty

• Pushes its left child onto the stack if nonempty

• hasNext()?

• Just returns if the stack is empty



Pre-order traversal

• Stack maintains the non-empty BinaryTree<E> objects that we still need to

traverse

• So next():

• pops the top item off the stack

• Stores its value to be returned

• Pushes its right child onto the stack if nonempty

• Pushes its left child onto the stack if nonempty

• hasNext()?

• Just returns if the stack is empty



Pre-order traversal

• Stack maintains the non-empty BinaryTree<E> objects that we still need to

traverse

• So next():

• pops the top item off the stack

• Stores its value to be returned

• Pushes its right child onto the stack if nonempty

• Pushes its left child onto the stack if nonempty

• hasNext()?

• Just returns if the stack is empty



Pre-order traversal

• Stack maintains the non-empty BinaryTree<E> objects that we still need to

traverse

• So next():

• pops the top item off the stack

• Stores its value to be returned

• Pushes its right child onto the stack if nonempty

• Pushes its left child onto the stack if nonempty

• hasNext()?

• Just returns if the stack is empty



Pre-order traversal

• Stack maintains the non-empty BinaryTree<E> objects that we still need to

traverse

• So next():

• pops the top item off the stack

• Stores its value to be returned

• Pushes its right child onto the stack if nonempty

• Pushes its left child onto the stack if nonempty

• hasNext()?

• Just returns if the stack is empty



In-order traversal

18

9

5 12

24

22 30

29 35

• A little less clear how to keep the stack: want

to output the root only after the left side is

completed; then output the right side

• In other words: want to output the root after

the left child has been completely traversed

• Seems like we want the root at the very

bottom of the stack. We’ll keep it at the

bottom of the stack as we traverse the left

subtree; then when we pop the root off we’ll

output its value and traverse the right child

• Nice idea, but it takes some care. Let’s be a

bit more specific



In-order traversal

18

9

5 12

24

22 30

29 35

• A little less clear how to keep the stack: want

to output the root only after the left side is

completed; then output the right side

• In other words: want to output the root after

the left child has been completely traversed

• Seems like we want the root at the very

bottom of the stack. We’ll keep it at the

bottom of the stack as we traverse the left

subtree; then when we pop the root off we’ll

output its value and traverse the right child

• Nice idea, but it takes some care. Let’s be a

bit more specific



In-order traversal

18

9

5 12

24

22 30

29 35

• A little less clear how to keep the stack: want

to output the root only after the left side is

completed; then output the right side

• In other words: want to output the root after

the left child has been completely traversed

• Seems like we want the root at the very

bottom of the stack. We’ll keep it at the

bottom of the stack as we traverse the left

subtree; then when we pop the root off we’ll

output its value and traverse the right child

• Nice idea, but it takes some care. Let’s be a

bit more specific



In-order traversal

18

9

5 12

24

22 30

29 35

• A little less clear how to keep the stack: want

to output the root only after the left side is

completed; then output the right side

• In other words: want to output the root after

the left child has been completely traversed

• Seems like we want the root at the very

bottom of the stack. We’ll keep it at the

bottom of the stack as we traverse the left

subtree; then when we pop the root off we’ll

output its value and traverse the right child

• Nice idea, but it takes some care. Let’s be a

bit more specific



In-order traversal

• To begin: push root onto the stack, then push its left child onto the stack, and

so on

• On a call to next():

• pop node from stack; store its value to be returned

• Push its right child onto the stack if nonempty

• Push the left child of this right child onto the stack, and its left child, and so on

• hasNext(): return if the stack is nonempty

• Let’s look at the code



In-order traversal

• To begin: push root onto the stack, then push its left child onto the stack, and

so on

• On a call to next():

• pop node from stack; store its value to be returned

• Push its right child onto the stack if nonempty

• Push the left child of this right child onto the stack, and its left child, and so on

• hasNext(): return if the stack is nonempty

• Let’s look at the code



In-order traversal

• To begin: push root onto the stack, then push its left child onto the stack, and

so on

• On a call to next():

• pop node from stack; store its value to be returned

• Push its right child onto the stack if nonempty

• Push the left child of this right child onto the stack, and its left child, and so on

• hasNext(): return if the stack is nonempty

• Let’s look at the code



In-order traversal

• To begin: push root onto the stack, then push its left child onto the stack, and

so on

• On a call to next():

• pop node from stack; store its value to be returned

• Push its right child onto the stack if nonempty

• Push the left child of this right child onto the stack, and its left child, and so on

• hasNext(): return if the stack is nonempty

• Let’s look at the code



In-order traversal

• To begin: push root onto the stack, then push its left child onto the stack, and

so on

• On a call to next():

• pop node from stack; store its value to be returned

• Push its right child onto the stack if nonempty

• Push the left child of this right child onto the stack, and its left child, and so on

• hasNext(): return if the stack is nonempty

• Let’s look at the code



In-order traversal

• To begin: push root onto the stack, then push its left child onto the stack, and

so on

• On a call to next():

• pop node from stack; store its value to be returned

• Push its right child onto the stack if nonempty

• Push the left child of this right child onto the stack, and its left child, and so on

• hasNext(): return if the stack is nonempty

• Let’s look at the code



In-order traversal

• To begin: push root onto the stack, then push its left child onto the stack, and

so on

• On a call to next():

• pop node from stack; store its value to be returned

• Push its right child onto the stack if nonempty

• Push the left child of this right child onto the stack, and its left child, and so on

• hasNext(): return if the stack is nonempty

• Let’s look at the code



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Stack is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Stack: 18 9 5



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Stack is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Stack: 18 9



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Stack is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Stack: 18 12



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Stack is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Stack: 18



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Stack is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Stack: 24 22



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Stack is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Stack: 24



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Stack is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Stack: 30 29



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Stack is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Stack: 30



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Stack is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Stack: 35



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Stack is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Stack:



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Stack is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree



Post-order traversal

• Same idea as in-order traversal

• Output the node when popping from the stack

• If you pop a node, and it’s the left child of its parent, push the parent’s right

child (and leftmost descendants) onto the stack

• Let’s look at the code



Post-order traversal

• Same idea as in-order traversal

• Output the node when popping from the stack

• If you pop a node, and it’s the left child of its parent, push the parent’s right

child (and leftmost descendants) onto the stack

• Let’s look at the code



Post-order traversal

• Same idea as in-order traversal

• Output the node when popping from the stack

• If you pop a node, and it’s the left child of its parent, push the parent’s right

child (and leftmost descendants) onto the stack

• Let’s look at the code



Post-order traversal

• Same idea as in-order traversal

• Output the node when popping from the stack

• If you pop a node, and it’s the left child of its parent, push the parent’s right

child (and leftmost descendants) onto the stack

• Let’s look at the code



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order traversal

• Level-order traversal is not recursive!

• How do we keep track of what nodes to visit next?

• Key insight: the order we visit nodes at a given “level” is the same order we

visited their parents

• So the first parents to be visited have the first children that are visited

• . . . Can we use a queue?



Level-order traversal

• Level-order traversal is not recursive!

• How do we keep track of what nodes to visit next?

• Key insight: the order we visit nodes at a given “level” is the same order we

visited their parents

• So the first parents to be visited have the first children that are visited

• . . . Can we use a queue?



Level-order traversal

• Level-order traversal is not recursive!

• How do we keep track of what nodes to visit next?

• Key insight: the order we visit nodes at a given “level” is the same order we

visited their parents

• So the first parents to be visited have the first children that are visited

• . . . Can we use a queue?



Level-order traversal

• Level-order traversal is not recursive!

• How do we keep track of what nodes to visit next?

• Key insight: the order we visit nodes at a given “level” is the same order we

visited their parents

• So the first parents to be visited have the first children that are visited

• . . . Can we use a queue?



Level-order traversal

• Level-order traversal is not recursive!

• How do we keep track of what nodes to visit next?

• Key insight: the order we visit nodes at a given “level” is the same order we

visited their parents

• So the first parents to be visited have the first children that are visited

• . . . Can we use a queue?



Level-order iterator

• To begin: push root onto the queue

• next():

• Dequeue node off the queue; store its value to be returned

• Enqueue its non-empty children onto the queue

• hasNext(): return if queue is empty

• Let’s look at the code



Level-order iterator

• To begin: push root onto the queue

• next():

• Dequeue node off the queue; store its value to be returned

• Enqueue its non-empty children onto the queue

• hasNext(): return if queue is empty

• Let’s look at the code



Level-order iterator

• To begin: push root onto the queue

• next():

• Dequeue node off the queue; store its value to be returned

• Enqueue its non-empty children onto the queue

• hasNext(): return if queue is empty

• Let’s look at the code



Level-order iterator

• To begin: push root onto the queue

• next():

• Dequeue node off the queue; store its value to be returned

• Enqueue its non-empty children onto the queue

• hasNext(): return if queue is empty

• Let’s look at the code



Level-order iterator

• To begin: push root onto the queue

• next():

• Dequeue node off the queue; store its value to be returned

• Enqueue its non-empty children onto the queue

• hasNext(): return if queue is empty

• Let’s look at the code



Level-order iterator

• To begin: push root onto the queue

• next():

• Dequeue node off the queue; store its value to be returned

• Enqueue its non-empty children onto the queue

• hasNext(): return if queue is empty

• Let’s look at the code



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Queue is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Queue: 9 24



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Queue is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Queue: 24 5 12



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Queue is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Queue: 5 12 22 30



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Queue is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Queue: 12 22 30



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Queue is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Queue: 22 30



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Queue is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Queue: 30



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Queue is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Queue: 29 35



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Queue is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Queue: 35



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Queue is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Queue:



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Queue is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Queue:


	Binary Tree
	Correctness on Trees
	Iterating Over Trees
	Tree Iterators

