
Time, Asymptotics, and
Recursion

Instructors: Sam McCauley and Dan Barowy

February 23, 2022



Admin

• Pairs assigned for lab 3 (randomly)

• Some office hours today if you’re still finishing up lab 2

• Important place in the course for you to check in if you’re feeling behind



Time and Space Analysis



How efficient is a given method?

• We saw how to do contains in a Vector. How many items did we have to look

through in the worst case?

• Let’s say I’m looking through a literal dictionary. Is my contains() method

very efficient? Do you have a faster way?

• What if I say I’m a really fast reader. Is your method still faster?

• Probably
• Unless the dictionary is really short. A fast reader may be able to read through a
dictionary with 10 elements better than a more clever search method

• Idea here: analyze the efficiency of a methodology. Your speed—or your

computer’s speed—shouldn’t be a factor.



What do we mean by efficiency?

• Perhaps: how long does a method take to run in seconds?

• How much space does it take? (How many bits do we need to store on our

computer during the calculation)?



Algorithmic Efficiency

• We are looking for worst-case guarantees

• When you write a piece of code, the goal here is to say “I promise that my
code will always run efficiently.”

• It’s a much more widely applicable statement than “I tested my code out and it
seems to run efficiently.”

• What if your tests didn’t take into account a key scenario?



The Challenge of Analyzing Time

• Different computers run at different speeds

• Computers are complicated! Adding two numbers together (for example) can

take drastically different times depending on context.

• Good news: often times these details don’t change much

• Example: It doesn’t matter (too much) how fast I read if I’m scanning

thousands of extra dictionary pages.



Counting up time

• When we look at some Java code, how can we estimate how fast it is?

• Let’s look at the operations the code requires

• By operations, I mean built-in operations like +, -, ==, if, =, array operations, etc.
• If any methods are called, should count up their operations as well

• If we sum the time of all operations, we can figure out how long the code

takes.

• Let’s do a quick example



Counting up time example

int i = 0; c1 time (integer variable assignment)

int count = 0; c2 time (integer variable assignment)

while(i < arr.length) { c3 time (accessing length and comparing)

count += arr[i]; c4 time (array access, addition, and assignment)

i++; c5 time (variable assignment and addition)

}

In total, this code takes time at most:

c1 + c2 + (c3 + c4 + c5) · arr.length



Counting up time comparison

int count = arr[0] % 27; c6 time

In total, this code takes time at most c6.

If our array is at all large, this is going to be faster than the loop on any computer.



Let’s formalize this

Goal in analyzing efficiency:

• We don’t care that much about constants

• We care about scaling: what happens when the data in question is fairly large?

• Big-O notation: way of comparing two running times with this in mind



Big-O Notation

Definition 1

f(n) is O(g(n)) if there exist constants c > 1 and n0 such that for all n > n0,

f(n) ≤ c · g(n)

That is to say: If n is large enough (n > n0), then ignoring constants (we compare

to c · g(n)), then g(n) is larger.



Plotting Big-O

Let g(n) be the blue function, and f(n) be the orange function. If g(n) and f(n)

continue increasing in the same way, then f(n) = O(g(n)).



Plotting Big-O

Let g(n) be the blue function, and f(n) be the orange function; assume that f(n) is

bounded above by the dotted line. Since f(n) < c ·g(n), we still have f(n) = O(g(n)).



Plotting Big-O

Continued from last slide: once we multiply g by a constant, we obtain the plot

shown in red; this is larger than f.



Proving Big-O

Reminder: f(n) is O(g(n)) if there exist constants c > 1 and n0 such that for all

n > n0, f(n) ≤ c · g(n)

• Let’s say we have two functions f(n) and g(n), and we want to show that f(n) is

O(g(n)).

• We need to come up with a c > 1 and an n0 such that for all n > n0,

f(n) ≤ c · g(n)



Counting up time example

int i = 0; c1 time

int count = 0; c2 time

while(i < arr.length) { c3 time

count += arr[i]; c4 time

i++; c5 time

}

Let’s define n = arr.length. That is: we are analyzing the running time in terms of

the array length

In total, this code takes time at most:

f(n) = c1 + c2 + (c3 + c4 + c5)n

Let’s prove that this is O(n).



Counting up time example

f(n) = c1 + c2 + (c3 + c4 + c5)n

Let’s prove that f(n) = O(n).

Let’s set n0 = 1 and c = c1 + c2 + c3 + c4 + c5. Then we want to show that for all

n > 1, f(n) ≤ c · g(n):

f(n) = c1 + c2 + (c3 + c4 + c5)n

≤ c1n+ c2n+ (c3 + c4 + c5)n

= (c1 + c2 + c3 + c4 + c5)n

= c · n
= c · g(n)

So for n > n0, f(n) ≤ c · g(n); therefore, f(n) = O(n)



Counting up time example

int i = 0; c1 time

int count = 0; c2 time

while(i < arr.length) { c3 time

count += arr[i]; c4 time

i++; c5 time

}

This code takes O(n) time.



Simplifying

• None of the ci really mattered in the above analysis

• What we want to do: count the number of operations in a code segment

• Don’t need to be too careful about it: count += arr[i] counting as 1

operation or 3 operations isn’t going to change our final result

• Let’s consider the above code again



Counting up time example

int i = 0; 2 operations

int count = 0;

while(i < arr.length) { 1 operation

count += arr[i]; 4 operations

i++;

}

This code takes 2+ 5n operations. Since each operation takes constant time, this

is O(n) time.



Counting up time comparison

int count = arr[0] % 27; 1 operation

If n is the length of the array, how long does this code take?

It takes a constant number of operations. O(1) time.

(Note: O(1) is means bounded above by a constant—this function does not get

larger as n increases. How does this relate to the definition of big-O?)



Wrapping Up Asymptotics

• We want to count the amount of time taken by a method

• Our analysis should apply regardless of how fast the computer is

• Idea: Look at how many operations are used. Use big-O notation

• Ignore constants
• Only care about sufficiently large inputs



Recursion



Recursion

• We’ve seen methods call other methods in Java

• Methods can also call themselves. This is called recursion

• Works just like any other method call! Execution continues from the beginning

of the method; goes back to previous point after it returns

• Recursion allows for simpler and clearer code in some cases

• But not in others

• Anything that can be solved with recursion can be solved without recursion

• It’s just one more tool in your toolbox



Classic example: factorial

• The factorial function, written n!, is useful in combinatorics

• (It counts the number of ways to order n objects.)

• n! is the product of the first n numbers:

n! = n · (n− 1) · (n− 2) . . .3 · 2 · 1

• So 4! = 4 · 3 · 2 · 1 = 24.

• Can also define n! = n · (n− 1)!



Two implementations of factorial

public static int factorial(int n) {

int ret= 1;

for(int current = n; current >= 1; current--) {

ret *= current;

}

return ret;

}

public static int factorial(int n) {

if(n == 1) {

return 1;

}

return n * factorial(n-1);

}



Factorial discussion

• Which of these methods is better?

• A matter of taste

• What are some advantages of the recursive method? What are some
disadvantages?

• If this method calls itself, why doesn’t it loop forever?



Recipe for Recursion

• Need a base case: on a sufficiently small input, can easily return the correct

solution without a recursive call

• If we’re not in the base case, can split into smaller instances of the same

problem



Searching a (Physical) Dictionary

• We agreed that my dictionary lookup method wasn’t very effective

• Can we describe a lookup methodology that works faster?

• (This is a method for humans, not code: let’s just talk about how it works on

the board.)



Binary Search

• Recursive algorithm for searching in a sorted list

• Can be implemented without recursion! That is to say: you can implement a

perfectly good binary search method with a loop instead of recursion

• We’ll be seeing a lot more of binary search soon.



Helper methods

• May be helpful to use extra information when recursing

• We didn’t just search in the dictionary, we kept track of which portion of the
dictionary we were recursing on

• Can create helper methods that have more parameters

• Let’s say we want to search a dictionary. We can “help” using a method that

searches a portion of a dictionary.



Another Recurion Example:
Scheduling



A scheduling problem: Creating Office Hours

• Let’s say there are 6 enrolled students enrolled in a course. I want to schedule

office hours so that every single student has a chance to attend office hours

• I create a doodle poll with 10 options for my office hours

• Each student states which of the office hours they can attend

• What is the minimum number of office hours I can hold so that every student

can make at least one hour?



Creating Office Hours

The possible time slots are {1, 2,3,4,5,6, 7,8,9, 10}.

• Student 1 can make slots {1,6,8}

• Student 2 can make slots {2,5,8}

• Student 3 can make slots {3,4,9, 10}

• Student 4 can make slots {6, 7,8,9}

• Student 5 can make slots {2,3,4}

• Student 6 can make slots {1,3,4,5,9}



Creating Office Hours

The possible time slots are {1,2,3,4,5,6, 7,8,9, 10}.

• Student 1 can make slots {1,6,8}

• Student 2 can make slots {2,5,8}

• Student 3 can make slots {3,4,9, 10}

• Student 4 can make slots {6, 7,8,9}

• Student 5 can make slots {2,3,4}

• Student 6 can make slots {1,3,4,5,9}

This is solvable with 3 slots. (I think that’s optimal?)



Solving the Office Hours Problem Recursively

• Where to start?

• Can someone come up with a base case?

• When there’s only one time slot, our only choice is to take it or not take it

• Second base case option: if there is one student, if they have an hour that
matches with a time slot, then 1 slot is optimal. Otherwise, can’t solve.

• Another option: zero students or zero time slots



Office Hours Scheduling: Breaking into a Smaller Subproblem

• How can we make this subproblem smaller?

• Let’s look at the first possible time slot

• There are two options: either this time slot is in the solution, or it isn’t

• Let’s assume we take the first time slot. Then we can remove that time slot from
our list, and remove all students who can attend that time slot. That gives us a
new instance of office hours scheduling!

• Let’s assume we don’t take the first time slot. Then we can remove that time slot
from our list. That gives us a new instance of office hours scheduling!



Office Hours Scheduling Solution

• If there is only remaining slot, just determine if it meets all students’ needs.

Return 1 if so; −1 otherwise.

• Otherwise:

• Recursively find the office hours scheduling solution with the first slot removed,
and with all students whose availability matches that slot removed. Store this
optimal solution in solWithSlot

• Recursively find the office hours scheduling solution with the first slot removed.
Store this optimal solution in solWithOutSlot

• If both solWithSlot and solWithOutSlot are not −1, return the minimum of

1+ solWithSlot and solWithOutSlot

• If just one is −1, return the other

• If both are −1, return −1.



Discussion

• Why does this method work? What do we need to guarantee for a recursion to
terminate?

• Need to make progress towards the base case!

• Each recursive call reduces the number of slots by 1

• Is this method fast? Is that OK?

• No, this is not fast at all.

• In algorithms you will learn that this problem is computationally
intensive—there’s no known solution that’s efficient and always correct


	Time and Space Analysis
	Recursion
	Another Recurion Example: Scheduling

