
Stacks and Queues

Instructors: Sam McCauley and Dan Barowy

April 4, 2022



Admin

• Welcome back!

• Lots handed back this week (midterm pretty much graded; probably back on

Friday)

• Think about applying to be a TA!

• Any questions?



Second Half of the Course

• First half was foundations

• Some basic data structures

• How to use Java

• Analyzing performance, proving correctness (big-O notation and induction)

• Second half: focus more on new data structures

• Go beyond list-like data structures

• This week: improve simplicity

• Later: (drastically) improve performance



Main Ideas For Today



Two Simple Data Structures

• Can only perform a subset of the operations that arrays or vectors or linked

lists can

• Goal: simple interface, flexible, good performance

• Data structures that do less can be easier to work with

• These two data structures are ubiquitous in computer science



Two Simple Data Structures

Stack Queue

(NB: no cutting allowed in our queues!)



Stacks



Stack

• Can only add or remove to the top

of the stack

• (No adding to the middle or

removing from the middle.)

• The item we remove is the most

recently added item



Stack Operations

Stacks have their own vocabulary.

• push(): Add a new item to the top of the stack

• Think addLast()

• pop(): Remove (and return) the top item on the stack

• Think removeLast()

• peek(): Return the top item on the stack without removing

• Think something like get(size() - 1)



Stack Operations

There are a few ways to implement a stack: it could be that we’re adding and

removing the first element!

• push(): Add a new item to the top of the stack

• Alternative: addFirst()

• pop(): Remove (and return) the top item on the stack

• Alternative: removeFirst()

• peek(): Return the top item on the stack without removing

• Alternative: get(0)



Stack

• Only three operations to worry about!

• How can we implement a stack using data structures we already have?

• What are the tradeoffs between some of the options we have?



Implementing a Stack with an Array

• Can be found in the structure5 StackArray class. Let’s take a look.

• Downside: need to declare array size up front; stack cannot grow beyond this

size.

• How can we keep track of what to add/remove?

• Keep an int top holding the location of the top element in the stack

• Running time for operations?

• push(): O(1)

• pop(): O(1)

• peek(): O(1)



Implementing a Stack with a Vector

• Can be found in the structure5 StackVector class. Let’s take a look.

• Don’t need int top anymore

• Running time for operations?

• push(): O(n) in the worst case. O(1) “on average”!

• pop(): O(1)

• peek(): O(1)

• Downside? O(n) extra space



Implementing a Stack with a Linked List

• Is a SinglyLinkedList a good idea? (Or do we need a DoublyLinkedList for

efficiency?)

• Singly linked works fine if we have the top element as the head of the list. Let’s

take a look at StackList

• Running time for operations?

• push(): O(1)

• pop(): O(1)

• peek(): O(1)

• Downside? O(n) extra space



When to Use Stacks?

• Classic example: JVM call stack!

• Keeps track of what methods we have called

• Each time a new method is called, we push it on the top of the stack

• When the method returns, pop it off the top of the stack

• Useful in implementing backtracking search

• Or any last-in-first-out usage



Fitting into structure5

• Probably want a Stack interface, with methods like pop(), push(), peek()

• Recall: Why are interfaces useful?

• Can declare a Stack object and access stack methods like pop() or peek() on it.

• Can change the underlying Stack class it’s instantiated with, without changing
how it’s used!



Interface example

Stack<Integer> s = new StackArray<Integer>(10); //max size 10

//can swap with the next line to remove max size:

//Stack<Integer> s = new StackList<Integer>();

for(int i = 0; i < 10; i++) {

s.push(i);

}

for(int i = 0; i < 10; i++) {

System.out.println(s.pop());

}



Queues



Queues

• Same idea as stacks: can only access one element

• Stacks are FILO (First In Last Out)

• Queues are FIFO (First In First Out)



Queues

• Think of a queue as waiting in line

• The first to join the queue is the first to leave



Stacks vs Queues



Queue Operations

• enqueue(): insert a value at the back of the queue

• Think addLast()

• dequeue(): remove and return the value from the front of the queue

• Think removeFirst()

• peek(): access the first value of the queue without removing it



Queue Interface Main Idea

public interface Queue<E> {

public void enqueue(E item);

public E dequeue();

public E peek();

public int size();

}



How to Implement a Queue?

• What data structures can we use?

• Array: leads to the QueueArray class

• What do we need to store?

• Need both the head, and the count of items stored in the queue

• Vector: leads to the QueueVector class

• For a Vector we can just call addLast and removeFirst; don’t need to change
anything

• Linked List: leads to the QueueList class

• We’ll discuss in a second. For now: can we use a Singly Linked List? Doubly Linked
List? What are the tradeoffs?



QueueArray

• Like StackArray has a max number of elements it can store

• Keeps two ints in addition to the array: head and count

• Key idea: we wrap around the array as new items are enqueued and old items

are dequeued

• Let’s look at the code

• Cost for enqueue()?

• O(1)

• Cost for dequeue()?

• O(1)



QueueVector

• Just call addLast and removeFirst

• Time for enqueue()?

• O(1)

• Time for dequeue()?

• O(n) (this is terrible! Never use a QueueVector.)



QueueList

• We want efficient addLast and removeFirst

• Singly linked lists have inefficient addLast

• Side note: it’s easy to modify so that we get O(1) for both using singly linked
nodes, i.e. by adding a tail pointer

• Can also use CircularList; this is what the code does (see textbook)

• Let’s consider a doubly linked list for the sake of discussion (only downside:

slightly wasteful for space)

• Time for enqueue()?

• O(1)

• Time for dequeue()?

• O(1)



Fitting Into Structure5



Putting the Classes Together

Blue: Interface

Yellow: Abstract Class

Green: Class

Remember that we can create simpler, more flexible code using interfaces and

abstract classes. How can stacks and queues fit into structure5?



Putting the Classes Together

Blue: Interface

Yellow: Abstract Class

Green: Class

Where do stacks and queues go here? Are they a List? Are they a Structure?

Let’s look at both interfaces.



Stacks and Queues

• They are not a List: don’t have methods like get(int i) or indexOf()

• They probably could be a Structure: methods like size() and clear() make
sense, as do add() and remove()

• This is a judgement call to some extent!

• In structure5, stacks and queues do implement Structure



Filling out structure5

• First: a Linear interface common to both stacks and queues, and an
AbstractLinear abstract class

• These don’t do too much; feel free to look at them

• Then, the Stack and Queue interface extend the Linear interface

• Have an AbstractStack and AbstractQueue abstract class

• Finally, each stack class implements Stack and extends AbstractStack

(likewise for queues)



AbstractStack

• What methods are common to all stacks?

• Hint: abstract classes are very good for implementing methods that just call

other methods

• Hint 2: the Structure interface promised some methods that don’t quite line

up with the stack terminology...

• Idea: we can implement push() by calling add() and pop() by calling

remove(), and so on

• Same for AbstractQueue!

• Let’s take a look at them



Current Structure5 Universe


	Main Ideas For Today
	Stacks
	Queues
	Fitting Into Structure5

