Sorting 2: Comparators, Merge
Sort, Abstract Classes

Instructors: Sam McCauley and Dan Barowy
March 9, 2022



Admin

e Practice midterm posted later today

e Much longer than the actual midterm will be!
¢ Some sample solutions posted as well.

e Midterm review next Wednesday (3/16)
e Come with questions!

e No class next Friday (3/18)



Sorting Objects



Sorting with compareTo

Let’'s add a compareTo() method to Student

This method compares the name of this student

e How does this choice affect what a sorted vector looks like?

Let’s try sorting Students with a compareTo method



Making InsertionSort generic

We never used the fact that this is a vector of students (other than the
compareTo () method

What kind of types can we sort?

We want this class to have a compareTo () method. How can we require this?

With an interface!



Comparable<T> Interface

e This is a Java interface, not structure5. (Built-in; don’t need to import
anything.)

e Comparable<T> has only one method: public int compareTo(T other)

e Let’s tell Java that our Student class implements this interface



Generic Upper Bounds

Way to tell Java that a generic type needs to meet certain requirements

That way, at compile time, Java can make sure our types match up

These are called upper bounds

Let’s say we only want to accept objects that meet the requirements of the
List interface. Rather than <E>, we write something like <E extends List>

e (Yes, it's extends and not implements. There are some good back-end reasons
for this.)

What do we want for our insertionSort method?

e Want <E extends Comparable<E>>

e That is to say: we want a type E that implements Comparable<E>. That is to say:
need that objects of type E have a compareTo method that takes objects of type
E as argument



Where we are

e Can sort any object so long as it implements Comparable<E>
e What are the downsides of this?

e What if we want to sort objects that aren’t already comparable and we don’t want
to modify the class?

e Can only sort objects one way. (What if we want to sort Students by grade?
Would need to rewrite the Student class!

e There are upsides as well; we'll come back to this after we talk about

Comparators



Sorting with Comparators

Way to sort objects without changing the class.

Let’s try to sort students by age, without rewriting Student. How can we do
that?

Idea: use an object whose job it is to compare students
e This object will not store any data

e Will just have a int compare(Student, Student) method to compare two
students

In general: Comparator<T> has a int compare(T, T) method
e compare returns < O if first is smaller; ® if equal; > ® if second is smaller
e Only job: compare objects of type T

e Need to import java.util.Comparator



Writing a Comparator<Student>

e This is a class that implements Comparator<Student>

e Goal: sort students by age



Using a Comparator

e Let's say we want a sort method that uses a comparator, rather than a
comparable object

e (Our sort should work for any comparator)

o Idea: take a comparator object as an argument. Then we can use its compare
method to compare the objects!



Abstract Classes




Object Oriented Programming

One advantage: Helps break down data and code into self-contained chunks

Also: can use objects as building blocks to create other objects!

e Improved portability, extensibility
e Avoid repetition!

Today: abstract classes

Wraps up Linked Lists



Interfaces

e “Recipe” for the methods that must be available in any class implementing the
interface

e Allows us to use multiple objects of different class types, through a united
interface

e Limitation: can’t write any code in an interface.

e (For now.)
¢ When is that a problem?

e What if several different classes implement the exact same method?



Example: Lists

e Vector and SinglyLinkedList both implement the List interface

e That means they both have a method addFirst (E)

¢ In fact, both have the same method!

public void addFirst(E value) {
add(0,value) ;
}




Abstract Classes

e If many classes have identical methods, want to only write that method once

e Idea: use an abstract class to store these methods



Abstract Class: Definition and Notation

e An abstract class is a partial implementation of the class; uses the abstract
keyword

e Have some methods written out
e Can also have instance variables
e Don't need to write all methods, even if implementing an interface
e Like an interface: cannot instantiate an object of an abstract class type

e Idea: this is just a part of a class! Need to fill in the details with a non-abstract
class



Abstract Class Usage

o We write some methods in an abstract class

e When writing a new class, can use the extends keyword to use the methods in
that abstract class

o If we extend an abstract class, we can use any of its methods! Plus any
additional ones we implement.



Abstract Classes with Lists

e In structureb, have an AbstractList class that implements methods that
would be identical in all Lists

e addFirst, addLast, contains, etc.

e Our lists then extend AbstractList to allow us to use these methods

e Let’s look at the code



The structure5 universe (almost)

(oace]  [oacw] [




The structure5 universe (so far)

Abstract Class




The structure5 universe (after break)

(o] [owcces] [

Structure

Abstractlinear

| AbstractStack | |m:sterueue|

—




Summary

e abstract keyword declares a class as abstract

e extends means that we are adding more methods on to an existing (abstract
in this case) class

e We can replace abstract class methods with our own if we want, or use them
as-is

e Cannot instantiate objects of abstract class type!



	Sorting Objects
	Abstract Classes

