
Sorting 2: Comparators, Merge
Sort, Abstract Classes

Instructors: Sam McCauley and Dan Barowy

March 9, 2022



Admin

• Practice midterm posted later today

• Much longer than the actual midterm will be!
• Some sample solutions posted as well.

• Midterm review next Wednesday (3/16)

• Come with questions!

• No class next Friday (3/18)



Sorting Objects



Sorting with compareTo

• Let’s add a compareTo() method to Student

• This method compares the name of this student

• How does this choice affect what a sorted vector looks like?

• Let’s try sorting Students with a compareTo method



Making InsertionSort generic

• We never used the fact that this is a vector of students (other than the

compareTo() method

• What kind of types can we sort?

• We want this class to have a compareTo() method. How can we require this?

• With an interface!



Comparable<T> Interface

• This is a Java interface, not structure5. (Built-in; don’t need to import

anything.)

• Comparable<T> has only one method: public int compareTo(T other)

• Let’s tell Java that our Student class implements this interface



Generic Upper Bounds

• Way to tell Java that a generic type needs to meet certain requirements

• That way, at compile time, Java can make sure our types match up

• These are called upper bounds

• Let’s say we only want to accept objects that meet the requirements of the
List interface. Rather than <E>, we write something like <E extends List>

• (Yes, it’s extends and not implements. There are some good back-end reasons
for this.)

• What do we want for our insertionSort method?

• Want <E extends Comparable<E>>

• That is to say: we want a type E that implements Comparable<E>. That is to say:
need that objects of type E have a compareTo method that takes objects of type
E as argument



Where we are

• Can sort any object so long as it implements Comparable<E>

• What are the downsides of this?

• What if we want to sort objects that aren’t already comparable and we don’t want
to modify the class?

• Can only sort objects one way. (What if we want to sort Students by grade?
Would need to rewrite the Student class!

• There are upsides as well; we’ll come back to this after we talk about

Comparators



Sorting with Comparators

• Way to sort objects without changing the class.

• Let’s try to sort students by age, without rewriting Student. How can we do

that?

• Idea: use an object whose job it is to compare students

• This object will not store any data

• Will just have a int compare(Student, Student) method to compare two
students

• In general: Comparator<T> has a int compare(T, T) method

• compare returns < 0 if first is smaller; 0 if equal; > 0 if second is smaller

• Only job: compare objects of type T

• Need to import java.util.Comparator



Writing a Comparator<Student>

• This is a class that implements Comparator<Student>

• Goal: sort students by age



Using a Comparator

• Let’s say we want a sort method that uses a comparator, rather than a

comparable object

• (Our sort should work for any comparator)

• Idea: take a comparator object as an argument. Then we can use its compare

method to compare the objects!



Abstract Classes



Object Oriented Programming

• One advantage: Helps break down data and code into self-contained chunks

• Also: can use objects as building blocks to create other objects!

• Improved portability, extensibility
• Avoid repetition!

• Today: abstract classes

• Wraps up Linked Lists



Interfaces

• “Recipe” for the methods that must be available in any class implementing the

interface

• Allows us to use multiple objects of different class types, through a united

interface

• Limitation: can’t write any code in an interface.

• (For now.)

• When is that a problem?

• What if several different classes implement the exact same method?



Example: Lists

• Vector and SinglyLinkedList both implement the List interface

• That means they both have a method addFirst(E)

• In fact, both have the same method!

public void addFirst(E value) {

add(0,value);

}



Abstract Classes

• If many classes have identical methods, want to only write that method once

• Idea: use an abstract class to store these methods



Abstract Class: Definition and Notation

• An abstract class is a partial implementation of the class; uses the abstract

keyword

• Have some methods written out

• Can also have instance variables

• Don’t need to write all methods, even if implementing an interface

• Like an interface: cannot instantiate an object of an abstract class type

• Idea: this is just a part of a class! Need to fill in the details with a non-abstract

class



Abstract Class Usage

• We write some methods in an abstract class

• When writing a new class, can use the extends keyword to use the methods in

that abstract class

• If we extend an abstract class, we can use any of its methods! Plus any

additional ones we implement.



Abstract Classes with Lists

• In structure5, have an AbstractList class that implements methods that
would be identical in all Lists

• addFirst, addLast, contains, etc.

• Our lists then extend AbstractList to allow us to use these methods

• Let’s look at the code



The structure5 universe (almost)



The structure5 universe (so far)



The structure5 universe (after break)



Summary

• abstract keyword declares a class as abstract

• extends means that we are adding more methods on to an existing (abstract

in this case) class

• We can replace abstract class methods with our own if we want, or use them

as-is

• Cannot instantiate objects of abstract class type!


	Sorting Objects
	Abstract Classes

