Sorting: Selection Sort and Insertion Sort

Instructors: Sam McCauley and Dan Barowy
March 7, 2822

Admin

- Any questions?

Sorting

How can we sort a set of items?

- Goal: sequence of steps

How can we sort a set of items?

- Goal: sequence of steps
- Guarantee that the cards are sorted at the end

How can we sort a set of items?

- Goal: sequence of steps
- Guarantee that the cards are sorted at the end

- We want to be able to:

How can we sort a set of items?

- Goal: sequence of steps
- Guarantee that the cards are sorted at the end

- We want to be able to:
- Code it up in Java

How can we sort a set of items?

- Goal: sequence of steps
- Guarantee that the cards are sorted at the end

- We want to be able to:
- Code it up in Java
- Analyze the running time

Specifics

10	21	-3	40	17	13	11	-4

- Have an array of numbers

Specifics

10	21	-3	40	17	13	11	-4

- Have an array of numbers
- Want to sort them in place (without copying to a new array)

Specifics

10	21	-3	40	17	13	11	-4

- Have an array of numbers
- Want to sort them in place (without copying to a new array)
- In other words: sort them using $O(1)$ extra space.

Specifics

10	21	-3	40	17	13	11	-4

- Have an array of numbers
- Want to sort them in place (without copying to a new array)
- In other words: sort them using $O(1)$ extra space.

-3	-4	10	11	13	17	21	48

Where to Start?

18	21	-3	40	17	13	11	-4

- Is there any number we can put directly in the correct place?

Where to Start?

18	21	-3	40	17	13	11	-4

- Is there any number we can put directly in the correct place?
- We can put the largest number in the last slot

Where to Start?

18	21	-3	40	17	13	11	-4

- Is there any number we can put directly in the correct place?
- We can put the largest number in the last slot
- Scan through the array to find the maximum number

Where to Start?

10	21	-3	40	17	13	11	-4

- Is there any number we can put directly in the correct place?
- We can put the largest number in the last slot
- Scan through the array to find the maximum number
- Time?

Where to Start?

10	21	-3	40	17	13	11	-4

- Is there any number we can put directly in the correct place?
- We can put the largest number in the last slot
- Scan through the array to find the maximum number
- Time?
- $O(n)$

Where to Start?

10	21	-3	40	17	13	11	-4

- Is there any number we can put directly in the correct place?
- We can put the largest number in the last slot
- Scan through the array to find the maximum number
- Time?
- $O(n)$
- Swap that number with the last number

18	21	-3	40	17	13	11	-4

Maximum so far:

Where to Start?

10	21	-3	40	17	13	11	-4

- Is there any number we can put directly in the correct place?
- We can put the largest number in the last slot
- Scan through the array to find the maximum number
- Time?
- $O(n)$
- Swap that number with the last number

10	21	-3	40	17	13	11	-4

Maximum so far: 18 at pos θ

Where to Start?

10	21	-3	40	17	13	11	-4

- Is there any number we can put directly in the correct place?
- We can put the largest number in the last slot
- Scan through the array to find the maximum number
- Time?
- $O(n)$
- Swap that number with the last number

10	21	-3	40	17	13	11	-4

Maximum so far: 21 at pos 1

Where to Start?

10	21	-3	40	17	13	11	-4

- Is there any number we can put directly in the correct place?
- We can put the largest number in the last slot
- Scan through the array to find the maximum number
- Time?
- $O(n)$
- Swap that number with the last number

10	21	-3	40	17	13	11	-4

Maximum so far: 21 at pos 1

Where to Start?

10	21	-3	40	17	13	11	-4

- Is there any number we can put directly in the correct place?
- We can put the largest number in the last slot
- Scan through the array to find the maximum number
- Time?
- $O(n)$
- Swap that number with the last number

10	21	-3	40	17	13	11	-4

Maximum so far: 48 at pos 3

Where to Start?

10	21	-3	40	17	13	11	-4

- Is there any number we can put directly in the correct place?
- We can put the largest number in the last slot
- Scan through the array to find the maximum number
- Time?
- $O(n)$
- Swap that number with the last number

10	21	-3	40	17	13	11	-4

Maximum so far: 48 at pos 3

Where to Start?

10	21	-3	40	17	13	11	-4

- Is there any number we can put directly in the correct place?
- We can put the largest number in the last slot
- Scan through the array to find the maximum number
- Time?
- $O(n)$
- Swap that number with the last number

10	21	-3	40	17	13	11	-4

Maximum so far: 48 at pos 3

Where to Start?

10	21	-3	40	17	13	11	-4

- Is there any number we can put directly in the correct place?
- We can put the largest number in the last slot
- Scan through the array to find the maximum number
- Time?
- $O(n)$
- Swap that number with the last number

10	21	-3	40	17	13	11	-4

Maximum so far: 48 at pos 3

Where to Start?

10	21	-3	40	17	13	11	-4

- Is there any number we can put directly in the correct place?
- We can put the largest number in the last slot
- Scan through the array to find the maximum number
- Time?
- $O(n)$
- Swap that number with the last number

10	21	-3	48	17	13	11	-4

Maximum so far: 48 at pos 3

Where to Start?

18	21	-3	40	17	13	11	-4

- Is there any number we can put directly in the correct place?
- We can put the largest number in the last slot
- Scan through the array to find the maximum number
- Time?
- $O(n)$
- Swap that number with the last number

10	21	-3	-4	17	13	11	40

Now what?

- Do it again! But now on all but the last element of the array

Now what?

- Do it again! But now on all but the last element of the array
- (This is essentially a recursive algorithm)

Selection Sort

10	21	-3	-4	17	13	11	40

Maximum so far: 18 at pos θ

Selection Sort

10	21	-3	-4	17	13	11	40

Maximum so far: 21 at pos 1

Selection Sort

10	21	-3	-4	17	13	11	40

Maximum so far: 21 at pos 1

Selection Sort

10	21	-3	-4	17	13	11	40

Maximum so far: 21 at pos 1

Selection Sort

10	21	-3	-4	17	13	11	40

Maximum so far: 21 at pos 1

Selection Sort

10	21	-3	-4	17	13	11	40

Maximum so far: 21 at pos 1

Selection Sort

10	21	-3	-4	17	13	11	40

Maximum so far: 21 at pos 1

Selection Sort

10	11	-3	-4	17	13	21	40

Maximum so far: 18 at pos θ

Selection Sort

10	11	-3	-4	17	13	21	40

Maximum so far: 11 at pos 1

Selection Sort

10	11	-3	-4	17	13	21	40

Maximum so far: 11 at pos 1

Selection Sort

10	11	-3	-4	17	13	21	40

Maximum so far: 11 at pos 1

Selection Sort

10	11	-3	-4	17	13	21	40

Maximum so far: 17 at pos 4

Selection Sort

10	11	-3	-4	17	13	21	40

Maximum so far: 17 at pos 4

Selection Sort

10	11	-3	-4	17	13	21	40

Maximum so far: 17 at pos 4

Selection Sort

-3	-4	10	11	13	17	21	4θ

Let's look at the code

- We'll do loops, not recursion

Let's look at the code

- We'll do loops, not recursion
- Let's assume we have a swap (int [], int, int) method that swaps two indices of an array

Selection Sort Code

```
public static void selectionSort(int data[], int n) {
    int numUnsorted = n;
    int index; // general index
    int max; // index of largest value
    while (numUnsorted > 0) {
        // determine maximum value in array
        max = 0;
        for (index = 1; index < numUnsorted; index++) {
            if (data[max] < data[index]) max = index;
        }
        swap(data,max,numUnsorted-1);
        numUnsorted--;
    }
}
```


How can we prove that this works?

- Why does it work?

How can we prove that this works?

- Why does it work?

- Idea: after the loop iterates i times,

6.Durchlauf	1	2	3	5	8	9
ו৬ U וte alay						

How can we prove that this works?

- Why does it work?

- Idea: after the loop iterates i times,
 order
- When $i=n$ we are done

How can we prove that this works?

- Why does it work?

- Idea: after the loop iterates i times,
 order
- When $i=n$ we are done
- Prove using induction. (Kind of like recursive algorithms.)

Proving Correctness by Induction

To show: for all $k \leq n$, after the loop iterates k times, the last k slots of the array contain the k largest elements of the array in sorted order.

Proving Correctness by Induction

To show: for all $k \leq n$, after the loop iterates k times, the last k slots of the array contain the k largest elements of the array in sorted order.

- Base case: $k=0$. Already satisfied

Proving Correctness by Induction

To show: for all $k \leq n$, after the loop iterates k times, the last k slots of the array contain the k largest elements of the array in sorted order.

- Base case: $k=0$. Already satisfied
- Inductive hypothesis: for some k, after the loop iterates k times, the last k slots of the array contain the k largest elements of the array in sorted order.

Proving Correctness by Induction

To show: for all $k \leq n$, after the loop iterates k times, the last k slots of the array contain the k largest elements of the array in sorted order.

- Base case: $k=0$. Already satisfied
- Inductive hypothesis: for some k, after the loop iterates k times, the last k slots of the array contain the k largest elements of the array in sorted order.
- Inductive step: by the inductive hypothesis, after the k th iteration of the outer loop, the last k slots of the array contain the k largest array items in sorted order. We scan through the array and find the largest element excluding the last k slots; this is the $k+1$ st largest item. The swap moves it into the $k+1$ st slot from the end of the array.

Wrapping up selection sort

- Fill up the array from right to left with largest element

Wrapping up selection sort

- Fill up the array from right to left with largest element
- How long does finding the maximum take?

Wrapping up selection sort

- Fill up the array from right to left with largest element
- How long does finding the maximum take?
- $O(n-i+1)$ time for the i th loop

Wrapping up selection sort

- Fill up the array from right to left with largest element
- How long does finding the maximum take?
- $O(n-i+1)$ time for the i th loop
- Summing: $\sum_{i=1}^{n} O(n-i+1)=\sum_{j=1}^{n} O(j)=O\left(n^{2}\right)$

Insertion Sort

Insertion Sort

- Similar to Selection Sort
- Similar to Selection Sort
- Significantly more efficient in practice (we'll come back to this)
- Similar to Selection Sort
- Significantly more efficient in practice (we'll come back to this)
- This time we'll start with why it works, and derive the algorithm

Insertion Sort

- A different approach to sorting
- A different approach to sorting
- After the k th loop, the first k items in the array are sorted
- The first k items may not be the smallest-but they are in sorted order
- A different approach to sorting
- After the k th loop, the first k items in the array are sorted
- The first k items may not be the smallest-but they are in sorted order
- How can we guarantee this for $k=1$?
- A different approach to sorting
- After the k th loop, the first k items in the array are sorted
- The first k items may not be the smallest-but they are in sorted order
- How can we guarantee this for $k=1$?
- Don't need to do anything

Insertion Sort

- A different approach to sorting
- After the k th loop, the first k items in the array are sorted
- The first k items may not be the smallest-but they are in sorted order
- How can we guarantee this for $k=1$?
- Don't need to do anything
- Let's say it works for k. What does the $k+1$ st loop need to accomplish to maintain the invariant?

-3	18	21	40	17	13	11	-4

Insertion Sort

- A different approach to sorting
- After the k th loop, the first k items in the array are sorted
- The first k items may not be the smallest-but they are in sorted order
- How can we guarantee this for $k=1$?
- Don't need to do anything
- Let's say it works for k. What does the $k+1$ st loop need to accomplish to maintain the invariant?

-3	10	21	40	17	13	11	-4

- Needs to insert the $k+1$ st item among the first k items in sorted order.

-3	18	17	21	40	13	11	-4

A Beautiful Way to Accomplish This

-3	10	17	21	40	13	11	-4

- Want to take the new item and move it into sorted position

A Beautiful Way to Accomplish This

-3	10	17	21	40	13	11	-4

- Want to take the new item and move it into sorted position
- Idea: need to move it down until the previous element is smaller

A Beautiful Way to Accomplish This

-3	10	17	21	40	13	11	-4

- Want to take the new item and move it into sorted position
- Idea: need to move it down until the previous element is smaller
- Inner loop: store element we are trying to insert. Shift elements down while it is smaller.

Insertion Sort Code

```
public static void insertionSort(int data[], int n) {
    int numSorted = 1; // number of values in place
    int index; // general index
    while (numSorted < n) {
        int temp = data[numSorted]; // first unsorted value
        for (index = numSorted; index > 0; index--) {
            if (temp < data[index-1]) {
            data[index] = data[index-1];
            } else {
                break;
            }
        }
        data[index] = temp; // reinsert value
        numSorted++;
    }
}
```


Insertion Sort Code

```
public static void insertionSort(int data[], int n) {
    int numSorted = 1; // number of values in place
    int index; // general index
    while (numSorted < n) {
        int temp = data[numSorted]; // first unsorted value
        for (index : Can we get rid of the break command in this
        if (temp
            data[i^uルљ」
                                    code?
        } else {
                break;
        }
        }
        data[index] = temp; // reinsert value
        numSorted++;
    }
}
```


Insertion Sort Code \# 2

```
public static void insertionSort(int data[], int n) {
    int numSorted = 1; // number of values in place
    while (numSorted < n) {
        int temp = data[numSorted]; // first unsorted value
        int index = numSorted;
        while(index > 0 && temp < data[index - 1]) {
            data[index] = data[index-1];
            index--;
        }
        data[index] = temp; // reinsert value
        numSorted++;
    }
}
```

Tradeoff with Selection Sort

- No swap method needed

Tradeoff with Selection Sort

- No swap method needed
- Code is a little shorter

Tradeoff with Selection Sort

- No swap method needed
- Code is a little shorter
- Efficiency?
- Both take n iterations of the outer loop. What about the inner loop?
- Selection sort always iterates through $n-i$ elements on the i th iteration
- Insertion sort may stop early! Can lead to better performance in practice (and is never worse)

Tradeoff with Selection Sort

- No swap method needed
- Code is a little shorter
- Efficiency?
- Both take n iterations of the outer loop. What about the inner loop?
- Selection sort always iterates through $n-i$ elements on the i th iteration
- Insertion sort may stop early! Can lead to better performance in practice (and is never worse)
- To be clear: both are still $O\left(n^{2}\right)$ in terms of worst-case performance. Insertion sort just has better constants, and better best-case performance

Sorting Objects

What do we need

- Reminder: we interact with objects using methods

What do we need

- Reminder: we interact with objects using methods
- What methods do we need in order to sort objects?

What do we need

- Reminder: we interact with objects using methods
- What methods do we need in order to sort objects?
- Need to be able to determine if one item is less than another

What do we need

- Reminder: we interact with objects using methods
- What methods do we need in order to sort objects?
- Need to be able to determine if one item is less than another
- Two ways that this may work. Both are good depending on use case.

What do we need

- Reminder: we interact with objects using methods
- What methods do we need in order to sort objects?
- Need to be able to determine if one item is less than another
- Two ways that this may work. Both are good depending on use case.
- First: only sort objects of a type with a compareTo() method, allowing two objects of that type to be compared

What do we need

- Reminder: we interact with objects using methods
- What methods do we need in order to sort objects?
- Need to be able to determine if one item is less than another
- Two ways that this may work. Both are good depending on use case.
- First: only sort objects of a type with a compareTo() method, allowing two objects of that type to be compared
- Second: create a new method that allows us to compare the objects

Sorting with compareTo

- Let's add a compareTo() method to Student

Sorting with compareTo

- Let's add a compareTo() method to Student
- This method compares the name of this student

Sorting with compareTo

- Let's add a compareTo() method to Student
- This method compares the name of this student
- How does this choice affect what a sorted vector looks like?

Sorting with compareTo

- Let's add a compareTo() method to Student
- This method compares the name of this student
- How does this choice affect what a sorted vector looks like?
- Let's try sorting Students with a compareTo method

Making InsertionSort generic

- We never used the fact that this is a vector of students (other than the compareTo() method

Making InsertionSort generic

- We never used the fact that this is a vector of students (other than the compareTo() method
- What kind of types can we sort?

Making InsertionSort generic

- We never used the fact that this is a vector of students (other than the compareTo() method
- What kind of types can we sort?
- We want this class to have a compareTo() method. How can we require this?

Making InsertionSort generic

- We never used the fact that this is a vector of students (other than the compareTo() method
- What kind of types can we sort?
- We want this class to have a compareTo() method. How can we require this?
- With an interface!

Comparable $<$ T $>$ Interface

- This is a Java interface, not structure5. (Built-in; don't need to import anything.)

Comparable $<$ T $>$ Interface

- This is a Java interface, not structure5. (Built-in; don't need to import anything.)
- Comparable<T> has only one method: public int compareTo(T other)

Comparable $<$ T $>$ Interface

- This is a Java interface, not structure5. (Built-in; don't need to import anything.)
- Comparable<T> has only one method: public int compareTo(T other)
- Let's tell Java that our Student class implements this interface

Creating a generic sorting method

- We can make the InsertionSort class generic, but that seems a bit nonspecific.

Creating a generic sorting method

- We can make the InsertionSort class generic, but that seems a bit nonspecific.
- Really: want to make one method generic. Can we do this in Java?

Creating a generic sorting method

- We can make the InsertionSort class generic, but that seems a bit nonspecific.
- Really: want to make one method generic. Can we do this in Java?
- Yes! Looks something like this:
- public static void <E> insertionSort(Vector<E> vec)

Creating a generic sorting method

- We can make the InsertionSort class generic, but that seems a bit nonspecific.
- Really: want to make one method generic. Can we do this in Java?
- Yes! Looks something like this:
- public static void <E> insertionSort(Vector<E> vec)
- Problem: can't use any E. Needs to be comparable with other objects of type E

Generic Upper Bounds

- Way to tell Java that a generic type needs to meet certain requirements

Generic Upper Bounds

- Way to tell Java that a generic type needs to meet certain requirements
- That way, at compile time, Java can make sure our types match up

Generic Upper Bounds

- Way to tell Java that a generic type needs to meet certain requirements
- That way, at compile time, Java can make sure our types match up
- These are called upper bounds

Generic Upper Bounds

- Way to tell Java that a generic type needs to meet certain requirements
- That way, at compile time, Java can make sure our types match up
- These are called upper bounds
- Let's say we only want to accept objects that meet the requirements of the List interface. Rather than <E>, we write something like <E extends List>
- (Yes, it's extends and not implements. There are some good back-end reasons for this.)

Generic Upper Bounds

- Way to tell Java that a generic type needs to meet certain requirements
- That way, at compile time, Java can make sure our types match up
- These are called upper bounds
- Let's say we only want to accept objects that meet the requirements of the List interface. Rather than <E>, we write something like <E extends List>
- (Yes, it's extends and not implements. There are some good back-end reasons for this.)
- What do we want for our insertionSort method?
- Want <E extends Comparable<E>>
- That is to say: we want a type E that implements Comparable<E>. That is to say: need that objects of type E have a compareTo method that takes objects of type E as argument

Where we are

- Can sort any object so long as it implements Comparable<E>

Where we are

- Can sort any object so long as it implements Comparable<E>
- What are the downsides of this?

Where we are

- Can sort any object so long as it implements Comparable<E>
- What are the downsides of this?
- What if we want to sort objects that aren't already comparable and we don't want to modify the class?

Where we are

- Can sort any object so long as it implements Comparable<E>
- What are the downsides of this?
- What if we want to sort objects that aren't already comparable and we don't want to modify the class?
- Can only sort objects one way. (What if we want to sort Students by grade? Would need to rewrite the Student class!

Where we are

- Can sort any object so long as it implements Comparable<E>
- What are the downsides of this?
- What if we want to sort objects that aren't already comparable and we don't want to modify the class?
- Can only sort objects one way. (What if we want to sort Students by grade? Would need to rewrite the Student class!
- There are upsides as well; we'll come back to this after we talk about Comparators

