Sorting: Selection Sort and
Insertion Sort

Instructors: Sam McCauley and Dan Barowy
March 7, 2022

Admin

e Any questions?

Sorting

How can we sort a set of items?

e Goal: sequence of steps

How can we sort a set of items?

e Goal: sequence of steps

e Guarantee that the cards are sorted at the end

How can we sort a set of items?

e Goal: sequence of steps

e Guarantee that the cards are sorted at the end

¢ We want to be able to:

How can we sort a set of items?

e Goal: sequence of steps

e Guarantee that the cards are sorted at the end

¢ We want to be able to:

e Code it up in Java

How can we sort a set of items?

e Goal: sequence of steps

e Guarantee that the cards are sorted at the end

¢ We want to be able to:

e Code it up in Java

e Analyze the running time

Specifics

(19 |21][-3[40 |17 [13|11]-4]

e Have an array of numbers

Specifics

(19 |21][-3[40 |17 [13|11]-4]

e Have an array of numbers

e Want to sort them in place (without copying to a new array)

Specifics

(19 |21][-3[40 |17 [13|11]-4]

e Have an array of numbers
e Want to sort them in place (without copying to a new array)

¢ In other words: sort them using O(1) extra space.

Specifics

(19 |21][-3[40 |17 [13|11]-4]

e Have an array of numbers
e Want to sort them in place (without copying to a new array)

¢ In other words: sort them using O(1) extra space.

(3-afe[n|13[17]21] 40|

Where to Start?

(10]21|-3[40 |17 |13][11]-4]

e Is there any number we can put directly in the correct place?

Where to Start?

(10]21|-3[40 |17 |13][11]-4]

e Is there any number we can put directly in the correct place?

e We can put the largest number in the last slot

Where to Start?

(10]21|-3[40 |17 |13][11]-4]

e Is there any number we can put directly in the correct place?

e We can put the largest number in the last slot

e Scan through the array to find the maximum number

Where to Start?

(10]21|-3[40 |17 |13][11]-4]

e Is there any number we can put directly in the correct place?

e We can put the largest number in the last slot
e Scan through the array to find the maximum number

e Time?

Where to Start?

(10]21|-3[40 |17 |13][11]-4]

e Is there any number we can put directly in the correct place?

e We can put the largest number in the last slot

e Scan through the array to find the maximum number
e Time?
 O(n)

Where to Start?

(10]21|-3[40 |17 |13][11]-4]

Is there any number we can put directly in the correct place?

We can put the largest number in the last slot

Scan through the array to find the maximum number
e Time?
e O(n)

Swap that number with the last number

(1021|340 |17 |13][11]-4]

Maximum so far:

Where to Start?

(10 |21]-3|40[17[13]|11]-4]

Is there any number we can put directly in the correct place?

We can put the largest number in the last slot

Scan through the array to find the maximum number
e Time?
e O(n)

Swap that number with the last number

(10 |21][-3]40[17 |13 11]-4]

Maximum so far: 10 at pos ®

Where to Start?

(10 |21]-3|40[17[13]|11]-4]

Is there any number we can put directly in the correct place?

We can put the largest number in the last slot

Scan through the array to find the maximum number
e Time?
e O(n)

Swap that number with the last number

(10 |21]-3|40[17 |13 11]-4]

Maximum so far: 21 at pos 1

Where to Start?

(10 |21]-3|40[17[13]|11]-4]

Is there any number we can put directly in the correct place?

We can put the largest number in the last slot

Scan through the array to find the maximum number
e Time?
e O(n)

Swap that number with the last number

(10|21 -3|40 17|13 11]-4]

Maximum so far: 21 at pos 1

Where to Start?

(10 |21]-3|40[17[13]|11]-4]

Is there any number we can put directly in the correct place?

We can put the largest number in the last slot

Scan through the array to find the maximum number
e Time?
e O(n)

Swap that number with the last number

(10 |21][-3]40[17[13]1]-4]

Maximum so far: 40 at pos 3

Where to Start?

(10 |21]-3|40[17[13]|11]-4]

Is there any number we can put directly in the correct place?

We can put the largest number in the last slot

Scan through the array to find the maximum number
e Time?
e O(n)

Swap that number with the last number

(10 |21]-3|40[17|13 11]-4]

Maximum so far: 40 at pos 3

Where to Start?

(10 |21]-3|40[17[13]|11]-4]

Is there any number we can put directly in the correct place?

We can put the largest number in the last slot

Scan through the array to find the maximum number
e Time?
e O(n)

Swap that number with the last number

(10 |21]-3|40[17 |13 11]-4]

Maximum so far: 40 at pos 3

Where to Start?

(10 |21]-3|40[17[13]|11]-4]

Is there any number we can put directly in the correct place?

We can put the largest number in the last slot

Scan through the array to find the maximum number
e Time?
e O(n)

Swap that number with the last number

(10 |21]-3|40[17 |13 11]-4]

Maximum so far: 40 at pos 3

Where to Start?

(10 |21]-3|40[17[13]|11]-4]

Is there any number we can put directly in the correct place?

We can put the largest number in the last slot

Scan through the array to find the maximum number
e Time?
e O(n)

Swap that number with the last number

(10 |21][-3|40[17 |13 1] 4]

Maximum so far: 40 at pos 3

Where to Start?

(10 |21]-3|40 17|13 11]-4]

Is there any number we can put directly in the correct place?

We can put the largest number in the last slot

Scan through the array to find the maximum number
e Time?
 O(n)

Swap that number with the last number

(10 |21][-3|-4]17]13]|11]40]

Now what?

e Do it again! But now on all but the last element of the array

Now what?

e Do it again! But now on all but the last element of the array

e (This is essentially a recursive algorithm)

Selection Sort

(10]21[-3[-4]17][13]11]40]

Maximum so far: 10 at pos ®

Selection Sort

(10 |21][-3[-4]17]13]11]40]

Maximum so far: 21 at pos 1

Selection Sort

(10]21[-3[-4]17]13]11]40]

Maximum so far: 21 at pos 1

Selection Sort

(10]21[-3]-4]17][13]11]40]

Maximum so far: 21 at pos 1

Selection Sort

(10 |21[-3]-4]17][13]11]40]

Maximum so far: 21 at pos 1

Selection Sort

(10]21[-3]-4]17][13]11]40]

Maximum so far: 21 at pos 1

Selection Sort

(10]21[-3]-4]17]13]11]40]

Maximum so far: 21 at pos 1

Selection Sort

(10| 11[-3]-4]17]13]21]40]

Maximum so far: 10 at pos ®

Selection Sort

(10|11 [-3]-4]17]13]21]40]

Maximum so far: 11 at pos 1

Selection Sort

(10 |11[-3]-4]17]13]21]40]

Maximum so far: 11 at pos 1

Selection Sort

(10 |11[-3]-4]17]13]21]40]

Maximum so far: 11 at pos 1

Selection Sort

(10 |11[-3]-4]17]13]21]40]

Maximum so far: 17 at pos 4

Selection Sort

(10 |11[-3]-4]17]13]21]40]

Maximum so far: 17 at pos 4

Selection Sort

(10 |11[-3]-4]17]13]21]40]

Maximum so far: 17 at pos 4

Selection Sort

|3]-4]®[1]|13]17]21]40]

Let’s look at the code

e We’'ll do loops, not recursion

Let’s look at the code

e We’'ll do loops, not recursion

e Let’'s assume we have a swap(int[], int, int) method that swaps two
indices of an array

Selection Sort Code

public static void selectionSort(int datal], int n) {
int numUnsorted = n;
int index; // general index
int max; // index of largest value
while (numUnsorted > 0) {
// determine maximum value in array
max = 0;
for (index = 1; index < numUnsorted; index++) {
if (datal[max] < datalindex]) max = index;
}
swap (data,max,numUnsorted-1) ;

numUnsorted--—;

How can we prove that this works?

e Why does it work?

How can we prove that this works?

e Why does it work?

e Idea: after the loop iterates i times,

e The last 7 slots of the array contain the i largest eleriieins ui

order

S
: 3
=N | Bon
sovons [5 [T]

[ARROn

]

6.Durchlauf

How can we prove that this works?

e Why does it work?

e Idea: after the loop iterates i times,

e The last 7 slots of the array contain the i largest eleriicins ui

order

e When i = n we are done

S
: 3
oo (R T 1)
sovons [s [T T

[ARROn

]

6.Durchlauf

How can we prove that this works?

Why does it work?

Idea: after the loop iterates i times,

e The last 7 slots of the array contain the i largest eleriicins ui

order

When i = n we are done

S
.
oo (R T 1)
sovous [s [T]

[, ARROn

]

6.Durchlauf

Prove using induction. (Kind of like recursive algorithms.)

Proving Correctness by Induction

To show: for all k < n, after the loop iterates k times, the last k slots of the array
contain the k largest elements of the array in sorted order.

Proving Correctness by Induction

To show: for all k < n, after the loop iterates k times, the last k slots of the array
contain the k largest elements of the array in sorted order.

e Base case: k = 0. Already satisfied

Proving Correctness by Induction

To show: for all k < n, after the loop iterates k times, the last k slots of the array
contain the k largest elements of the array in sorted order.

e Base case: k = 0. Already satisfied

e Inductive hypothesis: for some k, after the loop iterates k times, the last k
slots of the array contain the k largest elements of the array in sorted order.

Proving Correctness by Induction

To show: for all k < n, after the loop iterates k times, the last k slots of the array
contain the k largest elements of the array in sorted order.

e Base case: k = 0. Already satisfied

e Inductive hypothesis: for some k, after the loop iterates k times, the last k
slots of the array contain the k largest elements of the array in sorted order.

e Inductive step: by the inductive hypothesis, after the kth iteration of the outer
loop, the last k slots of the array contain the k largest array items in sorted
order. We scan through the array and find the largest element excluding the
last k slots; this is the k + 1st largest item. The swap moves it into the k + 1st
slot from the end of the array.

Wrapping up selection sort

e Fill up the array from right to left with largest element

Wrapping up selection sort

e Fill up the array from right to left with largest element

e How long does finding the maximum take?

Wrapping up selection sort

e Fill up the array from right to left with largest element

e How long does finding the maximum take?

e O(n — i+ 1) time for the ith loop

Wrapping up selection sort

e Fill up the array from right to left with largest element
e How long does finding the maximum take?

e O(n — i+ 1) time for the ith loop

e Summing: Y7, 0(n —i+1) = Y7, 0() = O(n?)

Insertion Sort

Insertion Sort

e Similar to Selection Sort

Insertion Sort

e Similar to Selection Sort

e Significantly more efficient in practice (we’ll come back to this)

Insertion Sort

e Similar to Selection Sort

e Significantly more efficient in practice (we’ll come back to this)

e This time we’'ll start with why it works, and derive the algorithm

Insertion Sort

¢ A different approach to sorting

Insertion Sort

¢ A different approach to sorting

o After the kth loop, the first k items in the array are sorted
e The first k items may not be the smallest—but they are in sorted order

Insertion Sort

¢ A different approach to sorting

o After the kth loop, the first k items in the array are sorted
e The first k items may not be the smallest—but they are in sorted order

e How can we guarantee this for k = 1?

Insertion Sort

¢ A different approach to sorting

o After the kth loop, the first k items in the array are sorted
e The first k items may not be the smallest—but they are in sorted order

e How can we guarantee this for k = 1?

e Don’t need to do anything

Insertion Sort

A different approach to sorting

After the kth loop, the first k items in the array are sorted
e The first k items may not be the smallest—but they are in sorted order

e How can we guarantee this for k = 1?

e Don’t need to do anything

Let’s say it works for k. What does the k + 1st loop need to accomplish to
maintain the invariant?

3|10 |21]40 |17 |13][1]-4]

Insertion Sort

A different approach to sorting

After the kth loop, the first k items in the array are sorted
e The first k items may not be the smallest—but they are in sorted order

e How can we guarantee this for k = 1?

e Don’t need to do anything

Let’s say it works for k. What does the k + 1st loop need to accomplish to
maintain the invariant?

3|10 |21]40 |17 |13][1]-4]

¢ Needs to insert the k + 1st item among the first k items in sorted order.

|3 [17]21]40 [13[11]-4]

A Beautiful Way to Accomplish This

(3]0]17]21]40 [13][11]-4]

e Want to take the new item and move it into sorted position

A Beautiful Way to Accomplish This

(3]0]17]21]40 [13][11]-4]

e Want to take the new item and move it into sorted position

e Idea: need to move it down until the previous element is smaller

A Beautiful Way to Accomplish This

(3]0]17]21]40 [13][11]-4]

e Want to take the new item and move it into sorted position

e Idea: need to move it down until the previous element is smaller

e Inner loop: store element we are trying to insert. Shift elements down while it
is smaller.

Insertion Sort Code

public static void insertionSort(int datal], int n) {
int numSorted = 1; // number of values in place
int index; // general index
while (numSorted < n) {
int temp = datal[numSorted]; // first unsorted value
for (index = numSorted; index > 0; index—-) {
if (temp < datalindex-1]) {
datal[index] = datal[index-1];
} else {
break;

}
data[index] = temp; // reinsert value

numSorted++;

Insertion Sort Code

public static void insertionSort(int datal], int n) {
int numSorted = 1; // number of values in place
int index; // general index
while (numSorted < n) {
int temp = datal[numSorted]; // first unsorted value

or (1 : _ N
or (index * .1 e get rid of the break command in this

code?

dataliuuca, GG s ag

} else {
break;

if (temp

}
data[index] = temp; // reinsert value

numSorted++;

Insertion Sort Code # 2

public static void insertionSort(int datal], int n) {
int numSorted = 1; // number of values in place
while (numSorted < n) {
int temp = data[numSorted]; // first unsorted value
int index = numSorted;
while(index > O && temp < datalindex - 1]) {
datal[index] = datal[index-1];
index--;
}
data[index] = temp; // reinsert value

numSorted++;

Tradeoff with Selection Sort

¢ No swap method needed

Tradeoff with Selection Sort

¢ No swap method needed

e Code is a little shorter

Tradeoff with Selection Sort

¢ No swap method needed

e Code is a little shorter

e Efficiency?
e Both take n iterations of the outer loop. What about the inner loop?
e Selection sort always iterates through n — i elements on the ith iteration
e Insertion sort may stop early! Can lead to better performance in practice (and is
never worse)

Tradeoff with Selection Sort

No swap method needed

Code is a little shorter

Efficiency?
e Both take n iterations of the outer loop. What about the inner loop?
e Selection sort always iterates through n — i elements on the ith iteration
e Insertion sort may stop early! Can lead to better performance in practice (and is
never worse)

To be clear: both are still O(n?) in terms of worst-case performance. Insertion
sort just has better constants, and better best-case performance

Sorting Objects

What do we need

e Reminder: we interact with objects using methods

What do we need

e Reminder: we interact with objects using methods

e What methods do we need in order to sort objects?

What do we need

e Reminder: we interact with objects using methods
e What methods do we need in order to sort objects?

¢ Need to be able to determine if one item is less than another

What do we need

e Reminder: we interact with objects using methods
e What methods do we need in order to sort objects?

¢ Need to be able to determine if one item is less than another

e Two ways that this may work. Both are good depending on use case.

What do we need

e Reminder: we interact with objects using methods
e What methods do we need in order to sort objects?

¢ Need to be able to determine if one item is less than another

e Two ways that this may work. Both are good depending on use case.

e First: only sort objects of a type with a compareTo () method, allowing two
objects of that type to be compared

What do we need

e Reminder: we interact with objects using methods
e What methods do we need in order to sort objects?

¢ Need to be able to determine if one item is less than another

e Two ways that this may work. Both are good depending on use case.

e First: only sort objects of a type with a compareTo () method, allowing two
objects of that type to be compared

e Second: create a new method that allows us to compare the objects

Sorting with compareTo

e Let’s add a compareTo () method to Student

Sorting with compareTo

e Let’s add a compareTo () method to Student

e This method compares the name of this student

Sorting with compareTo

e Let's add a compareTo () method to Student

e This method compares the name of this student

e How does this choice affect what a sorted vector looks like?

Sorting with compareTo

Let’'s add a compareTo() method to Student

This method compares the name of this student

e How does this choice affect what a sorted vector looks like?

Let’s try sorting Students with a compareTo method

Making InsertionSort generic

e We never used the fact that this is a vector of students (other than the
compareTo () method

Making InsertionSort generic

e We never used the fact that this is a vector of students (other than the
compareTo () method

e What kind of types can we sort?

Making InsertionSort generic

e We never used the fact that this is a vector of students (other than the
compareTo () method

e What kind of types can we sort?

e We want this class to have a compareTo () method. How can we require this?

Making InsertionSort generic

We never used the fact that this is a vector of students (other than the
compareTo () method

What kind of types can we sort?

We want this class to have a compareTo () method. How can we require this?

With an interface!

Comparable<T> Interface

e This is a Java interface, not structure5. (Built-in; don’t need to import
anything.)

Comparable<T> Interface

e This is a Java interface, not structure5. (Built-in; don’t need to import
anything.)

e Comparable<T> has only one method: public int compareTo(T other)

Comparable<T> Interface

e This is a Java interface, not structure5. (Built-in; don’t need to import
anything.)

e Comparable<T> has only one method: public int compareTo(T other)

e Let’s tell Java that our Student class implements this interface

Creating a generic sorting method

e We can make the InsertionSort class generic, but that seems a bit
nonspecific.

Creating a generic sorting method

e We can make the InsertionSort class generic, but that seems a bit
nonspecific.

e Really: want to make one method generic. Can we do this in Java?

Creating a generic sorting method

e We can make the InsertionSort class generic, but that seems a bit
nonspecific.

e Really: want to make one method generic. Can we do this in Java?

e Yes! Looks something like this:

e public static void <E> insertionSort(Vector<E> vec)

Creating a generic sorting method

We can make the InsertionSort class generic, but that seems a bit
nonspecific.

Really: want to make one method generic. Can we do this in Java?

Yes! Looks something like this:

e public static void <E> insertionSort(Vector<E> vec)

Problem: can’t use any E. Needs to be comparable with other objects of type E

Generic Upper Bounds

e Way to tell Java that a generic type needs to meet certain requirements

Generic Upper Bounds

e Way to tell Java that a generic type needs to meet certain requirements

e That way, at compile time, Java can make sure our types match up

Generic Upper Bounds

e Way to tell Java that a generic type needs to meet certain requirements
e That way, at compile time, Java can make sure our types match up

e These are called upper bounds

Generic Upper Bounds

Way to tell Java that a generic type needs to meet certain requirements

That way, at compile time, Java can make sure our types match up

These are called upper bounds

Let’s say we only want to accept objects that meet the requirements of the
List interface. Rather than <E>, we write something like <E extends List>

e (Yes, it's extends and not implements. There are some good back-end reasons
for this.)

Generic Upper Bounds

Way to tell Java that a generic type needs to meet certain requirements

That way, at compile time, Java can make sure our types match up

These are called upper bounds

Let’s say we only want to accept objects that meet the requirements of the
List interface. Rather than <E>, we write something like <E extends List>

e (Yes, it's extends and not implements. There are some good back-end reasons
for this.)

What do we want for our insertionSort method?

e Want <E extends Comparable<E>>

e That is to say: we want a type E that implements Comparable<E>. That is to say:
need that objects of type E have a compareTo method that takes objects of type
E as argument

Where we are

e Can sort any object so long as it implements Comparable<E>

Where we are

e Can sort any object so long as it implements Comparable<E>

e What are the downsides of this?

Where we are

e Can sort any object so long as it implements Comparable<E>
e What are the downsides of this?

e What if we want to sort objects that aren’t already comparable and we don’t want
to modify the class?

Where we are

e Can sort any object so long as it implements Comparable<E>
e What are the downsides of this?

e What if we want to sort objects that aren’t already comparable and we don’t want
to modify the class?

e Can only sort objects one way. (What if we want to sort Students by grade?
Would need to rewrite the Student class!

Where we are

e Can sort any object so long as it implements Comparable<E>
e What are the downsides of this?

e What if we want to sort objects that aren’t already comparable and we don’t want
to modify the class?

e Can only sort objects one way. (What if we want to sort Students by grade?
Would need to rewrite the Student class!

e There are upsides as well; we'll come back to this after we talk about

Comparators

	Sorting
	Insertion Sort
	Sorting Objects

