
Sorting: Selection Sort and
Insertion Sort

Instructors: Sam McCauley and Dan Barowy

March 7, 2022



Admin

• Any questions?



Sorting



How can we sort a set of items?

• Goal: sequence of steps

• Guarantee that the cards are sorted at the end

• We want to be able to:

• Code it up in Java

• Analyze the running time



How can we sort a set of items?

• Goal: sequence of steps

• Guarantee that the cards are sorted at the end

• We want to be able to:

• Code it up in Java

• Analyze the running time



How can we sort a set of items?

• Goal: sequence of steps

• Guarantee that the cards are sorted at the end

• We want to be able to:

• Code it up in Java

• Analyze the running time



How can we sort a set of items?

• Goal: sequence of steps

• Guarantee that the cards are sorted at the end

• We want to be able to:

• Code it up in Java

• Analyze the running time



How can we sort a set of items?

• Goal: sequence of steps

• Guarantee that the cards are sorted at the end

• We want to be able to:

• Code it up in Java

• Analyze the running time



Specifics

10 21 -3 40 17 13 11 -4

• Have an array of numbers

• Want to sort them in place (without copying to a new array)

• In other words: sort them using O(1) extra space.

-3 -4 10 11 13 17 21 40



Specifics

10 21 -3 40 17 13 11 -4

• Have an array of numbers

• Want to sort them in place (without copying to a new array)

• In other words: sort them using O(1) extra space.

-3 -4 10 11 13 17 21 40



Specifics

10 21 -3 40 17 13 11 -4

• Have an array of numbers

• Want to sort them in place (without copying to a new array)

• In other words: sort them using O(1) extra space.

-3 -4 10 11 13 17 21 40



Specifics

10 21 -3 40 17 13 11 -4

• Have an array of numbers

• Want to sort them in place (without copying to a new array)

• In other words: sort them using O(1) extra space.

-3 -4 10 11 13 17 21 40



Where to Start?

10 21 -3 40 17 13 11 -4

• Is there any number we can put directly in the correct place?

• We can put the largest number in the last slot

• Scan through the array to find the maximum number

• Time?

• O(n)

• Swap that number with the last number

10 21 -3 40 17 13 11 -4

Maximum so far:



Where to Start?

10 21 -3 40 17 13 11 -4

• Is there any number we can put directly in the correct place?

• We can put the largest number in the last slot

• Scan through the array to find the maximum number

• Time?

• O(n)

• Swap that number with the last number

10 21 -3 40 17 13 11 -4

Maximum so far:



Where to Start?

10 21 -3 40 17 13 11 -4

• Is there any number we can put directly in the correct place?

• We can put the largest number in the last slot

• Scan through the array to find the maximum number

• Time?

• O(n)

• Swap that number with the last number

10 21 -3 40 17 13 11 -4

Maximum so far:



Where to Start?

10 21 -3 40 17 13 11 -4

• Is there any number we can put directly in the correct place?

• We can put the largest number in the last slot

• Scan through the array to find the maximum number

• Time?

• O(n)

• Swap that number with the last number

10 21 -3 40 17 13 11 -4

Maximum so far:



Where to Start?

10 21 -3 40 17 13 11 -4

• Is there any number we can put directly in the correct place?

• We can put the largest number in the last slot

• Scan through the array to find the maximum number

• Time?

• O(n)

• Swap that number with the last number

10 21 -3 40 17 13 11 -4

Maximum so far:



Where to Start?

10 21 -3 40 17 13 11 -4

• Is there any number we can put directly in the correct place?

• We can put the largest number in the last slot

• Scan through the array to find the maximum number

• Time?

• O(n)

• Swap that number with the last number

10 21 -3 40 17 13 11 -4

Maximum so far:



Where to Start?

10 21 -3 40 17 13 11 -4

• Is there any number we can put directly in the correct place?

• We can put the largest number in the last slot

• Scan through the array to find the maximum number

• Time?

• O(n)

• Swap that number with the last number

10 21 -3 40 17 13 11 -4

Maximum so far: 10 at pos 0



Where to Start?

10 21 -3 40 17 13 11 -4

• Is there any number we can put directly in the correct place?

• We can put the largest number in the last slot

• Scan through the array to find the maximum number

• Time?

• O(n)

• Swap that number with the last number

10 21 -3 40 17 13 11 -4

Maximum so far: 21 at pos 1



Where to Start?

10 21 -3 40 17 13 11 -4

• Is there any number we can put directly in the correct place?

• We can put the largest number in the last slot

• Scan through the array to find the maximum number

• Time?

• O(n)

• Swap that number with the last number

10 21 -3 40 17 13 11 -4

Maximum so far: 21 at pos 1



Where to Start?

10 21 -3 40 17 13 11 -4

• Is there any number we can put directly in the correct place?

• We can put the largest number in the last slot

• Scan through the array to find the maximum number

• Time?

• O(n)

• Swap that number with the last number

10 21 -3 40 17 13 11 -4

Maximum so far: 40 at pos 3



Where to Start?

10 21 -3 40 17 13 11 -4

• Is there any number we can put directly in the correct place?

• We can put the largest number in the last slot

• Scan through the array to find the maximum number

• Time?

• O(n)

• Swap that number with the last number

10 21 -3 40 17 13 11 -4

Maximum so far: 40 at pos 3



Where to Start?

10 21 -3 40 17 13 11 -4

• Is there any number we can put directly in the correct place?

• We can put the largest number in the last slot

• Scan through the array to find the maximum number

• Time?

• O(n)

• Swap that number with the last number

10 21 -3 40 17 13 11 -4

Maximum so far: 40 at pos 3



Where to Start?

10 21 -3 40 17 13 11 -4

• Is there any number we can put directly in the correct place?

• We can put the largest number in the last slot

• Scan through the array to find the maximum number

• Time?

• O(n)

• Swap that number with the last number

10 21 -3 40 17 13 11 -4

Maximum so far: 40 at pos 3



Where to Start?

10 21 -3 40 17 13 11 -4

• Is there any number we can put directly in the correct place?

• We can put the largest number in the last slot

• Scan through the array to find the maximum number

• Time?

• O(n)

• Swap that number with the last number

10 21 -3 40 17 13 11 -4

Maximum so far: 40 at pos 3



Where to Start?

10 21 -3 40 17 13 11 -4

• Is there any number we can put directly in the correct place?

• We can put the largest number in the last slot

• Scan through the array to find the maximum number

• Time?

• O(n)

• Swap that number with the last number

10 21 -3 -4 17 13 11 40



Now what?

• Do it again! But now on all but the last element of the array

• (This is essentially a recursive algorithm)



Now what?

• Do it again! But now on all but the last element of the array

• (This is essentially a recursive algorithm)



Selection Sort

10 21 -3 -4 17 13 11 40

Maximum so far: 10 at pos 0



Selection Sort

10 21 -3 -4 17 13 11 40

Maximum so far: 21 at pos 1



Selection Sort

10 21 -3 -4 17 13 11 40

Maximum so far: 21 at pos 1



Selection Sort

10 21 -3 -4 17 13 11 40

Maximum so far: 21 at pos 1



Selection Sort

10 21 -3 -4 17 13 11 40

Maximum so far: 21 at pos 1



Selection Sort

10 21 -3 -4 17 13 11 40

Maximum so far: 21 at pos 1



Selection Sort

10 21 -3 -4 17 13 11 40

Maximum so far: 21 at pos 1



Selection Sort

10 11 -3 -4 17 13 21 40

Maximum so far: 10 at pos 0



Selection Sort

10 11 -3 -4 17 13 21 40

Maximum so far: 11 at pos 1



Selection Sort

10 11 -3 -4 17 13 21 40

Maximum so far: 11 at pos 1



Selection Sort

10 11 -3 -4 17 13 21 40

Maximum so far: 11 at pos 1



Selection Sort

10 11 -3 -4 17 13 21 40

Maximum so far: 17 at pos 4



Selection Sort

10 11 -3 -4 17 13 21 40

Maximum so far: 17 at pos 4



Selection Sort

10 11 -3 -4 17 13 21 40

Maximum so far: 17 at pos 4



Selection Sort

-3 -4 10 11 13 17 21 40



Let’s look at the code

• We’ll do loops, not recursion

• Let’s assume we have a swap(int[], int, int) method that swaps two

indices of an array



Let’s look at the code

• We’ll do loops, not recursion

• Let’s assume we have a swap(int[], int, int) method that swaps two

indices of an array



Selection Sort Code

public static void selectionSort(int data[], int n) {

int numUnsorted = n;

int index; // general index

int max; // index of largest value

while (numUnsorted > 0) {

// determine maximum value in array

max = 0;

for (index = 1; index < numUnsorted; index++) {

if (data[max] < data[index]) max = index;

}

swap(data,max,numUnsorted-1);

numUnsorted--;

}

}



How can we prove that this works?

• Why does it work?

• Idea: after the loop iterates i times,

• The last i slots of the array contain the i largest elements of the array in sorted
order

• When i = n we are done

• Prove using induction. (Kind of like recursive algorithms.)



How can we prove that this works?

• Why does it work?

• Idea: after the loop iterates i times,

• The last i slots of the array contain the i largest elements of the array in sorted
order

• When i = n we are done

• Prove using induction. (Kind of like recursive algorithms.)



How can we prove that this works?

• Why does it work?

• Idea: after the loop iterates i times,

• The last i slots of the array contain the i largest elements of the array in sorted
order

• When i = n we are done

• Prove using induction. (Kind of like recursive algorithms.)



How can we prove that this works?

• Why does it work?

• Idea: after the loop iterates i times,

• The last i slots of the array contain the i largest elements of the array in sorted
order

• When i = n we are done

• Prove using induction. (Kind of like recursive algorithms.)



Proving Correctness by Induction

To show: for all k ≤ n, after the loop iterates k times, the last k slots of the array

contain the k largest elements of the array in sorted order.

• Base case: k = 0. Already satisfied

• Inductive hypothesis: for some k, after the loop iterates k times, the last k

slots of the array contain the k largest elements of the array in sorted order.

• Inductive step: by the inductive hypothesis, after the kth iteration of the outer

loop, the last k slots of the array contain the k largest array items in sorted

order. We scan through the array and find the largest element excluding the

last k slots; this is the k + 1st largest item. The swap moves it into the k + 1st

slot from the end of the array.



Proving Correctness by Induction

To show: for all k ≤ n, after the loop iterates k times, the last k slots of the array

contain the k largest elements of the array in sorted order.

• Base case: k = 0. Already satisfied

• Inductive hypothesis: for some k, after the loop iterates k times, the last k

slots of the array contain the k largest elements of the array in sorted order.

• Inductive step: by the inductive hypothesis, after the kth iteration of the outer

loop, the last k slots of the array contain the k largest array items in sorted

order. We scan through the array and find the largest element excluding the

last k slots; this is the k + 1st largest item. The swap moves it into the k + 1st

slot from the end of the array.



Proving Correctness by Induction

To show: for all k ≤ n, after the loop iterates k times, the last k slots of the array

contain the k largest elements of the array in sorted order.

• Base case: k = 0. Already satisfied

• Inductive hypothesis: for some k, after the loop iterates k times, the last k

slots of the array contain the k largest elements of the array in sorted order.

• Inductive step: by the inductive hypothesis, after the kth iteration of the outer

loop, the last k slots of the array contain the k largest array items in sorted

order. We scan through the array and find the largest element excluding the

last k slots; this is the k + 1st largest item. The swap moves it into the k + 1st

slot from the end of the array.



Proving Correctness by Induction

To show: for all k ≤ n, after the loop iterates k times, the last k slots of the array

contain the k largest elements of the array in sorted order.

• Base case: k = 0. Already satisfied

• Inductive hypothesis: for some k, after the loop iterates k times, the last k

slots of the array contain the k largest elements of the array in sorted order.

• Inductive step: by the inductive hypothesis, after the kth iteration of the outer

loop, the last k slots of the array contain the k largest array items in sorted

order. We scan through the array and find the largest element excluding the

last k slots; this is the k + 1st largest item. The swap moves it into the k + 1st

slot from the end of the array.



Wrapping up selection sort

• Fill up the array from right to left with largest element

• How long does finding the maximum take?

• O(n− i + 1) time for the ith loop

• Summing:
∑n

i=1O(n− i + 1) =
∑n

j=1O(j) = O(n2)



Wrapping up selection sort

• Fill up the array from right to left with largest element

• How long does finding the maximum take?

• O(n− i + 1) time for the ith loop

• Summing:
∑n

i=1O(n− i + 1) =
∑n

j=1O(j) = O(n2)



Wrapping up selection sort

• Fill up the array from right to left with largest element

• How long does finding the maximum take?

• O(n− i + 1) time for the ith loop

• Summing:
∑n

i=1O(n− i + 1) =
∑n

j=1O(j) = O(n2)



Wrapping up selection sort

• Fill up the array from right to left with largest element

• How long does finding the maximum take?

• O(n− i + 1) time for the ith loop

• Summing:
∑n

i=1O(n− i + 1) =
∑n

j=1O(j) = O(n2)



Insertion Sort



Insertion Sort

• Similar to Selection Sort

• Significantly more efficient in practice (we’ll come back to this)

• This time we’ll start with why it works, and derive the algorithm



Insertion Sort

• Similar to Selection Sort

• Significantly more efficient in practice (we’ll come back to this)

• This time we’ll start with why it works, and derive the algorithm



Insertion Sort

• Similar to Selection Sort

• Significantly more efficient in practice (we’ll come back to this)

• This time we’ll start with why it works, and derive the algorithm



Insertion Sort

• A different approach to sorting

• After the kth loop, the first k items in the array are sorted

• The first k items may not be the smallest—but they are in sorted order

• How can we guarantee this for k = 1?

• Don’t need to do anything

• Let’s say it works for k. What does the k + 1st loop need to accomplish to

maintain the invariant?

-3 10 21 40 17 13 11 -4

• Needs to insert the k + 1st item among the first k items in sorted order.

-3 10 17 21 40 13 11 -4



Insertion Sort

• A different approach to sorting

• After the kth loop, the first k items in the array are sorted

• The first k items may not be the smallest—but they are in sorted order

• How can we guarantee this for k = 1?

• Don’t need to do anything

• Let’s say it works for k. What does the k + 1st loop need to accomplish to

maintain the invariant?

-3 10 21 40 17 13 11 -4

• Needs to insert the k + 1st item among the first k items in sorted order.

-3 10 17 21 40 13 11 -4



Insertion Sort

• A different approach to sorting

• After the kth loop, the first k items in the array are sorted

• The first k items may not be the smallest—but they are in sorted order

• How can we guarantee this for k = 1?

• Don’t need to do anything

• Let’s say it works for k. What does the k + 1st loop need to accomplish to

maintain the invariant?

-3 10 21 40 17 13 11 -4

• Needs to insert the k + 1st item among the first k items in sorted order.

-3 10 17 21 40 13 11 -4



Insertion Sort

• A different approach to sorting

• After the kth loop, the first k items in the array are sorted

• The first k items may not be the smallest—but they are in sorted order

• How can we guarantee this for k = 1?

• Don’t need to do anything

• Let’s say it works for k. What does the k + 1st loop need to accomplish to

maintain the invariant?

-3 10 21 40 17 13 11 -4

• Needs to insert the k + 1st item among the first k items in sorted order.

-3 10 17 21 40 13 11 -4



Insertion Sort

• A different approach to sorting

• After the kth loop, the first k items in the array are sorted

• The first k items may not be the smallest—but they are in sorted order

• How can we guarantee this for k = 1?

• Don’t need to do anything

• Let’s say it works for k. What does the k + 1st loop need to accomplish to

maintain the invariant?

-3 10 21 40 17 13 11 -4

• Needs to insert the k + 1st item among the first k items in sorted order.

-3 10 17 21 40 13 11 -4



Insertion Sort

• A different approach to sorting

• After the kth loop, the first k items in the array are sorted

• The first k items may not be the smallest—but they are in sorted order

• How can we guarantee this for k = 1?

• Don’t need to do anything

• Let’s say it works for k. What does the k + 1st loop need to accomplish to

maintain the invariant?

-3 10 21 40 17 13 11 -4

• Needs to insert the k + 1st item among the first k items in sorted order.

-3 10 17 21 40 13 11 -4



A Beautiful Way to Accomplish This

-3 10 17 21 40 13 11 -4

• Want to take the new item and move it into sorted position

• Idea: need to move it down until the previous element is smaller

• Inner loop: store element we are trying to insert. Shift elements down while it

is smaller.



A Beautiful Way to Accomplish This

-3 10 17 21 40 13 11 -4

• Want to take the new item and move it into sorted position

• Idea: need to move it down until the previous element is smaller

• Inner loop: store element we are trying to insert. Shift elements down while it

is smaller.



A Beautiful Way to Accomplish This

-3 10 17 21 40 13 11 -4

• Want to take the new item and move it into sorted position

• Idea: need to move it down until the previous element is smaller

• Inner loop: store element we are trying to insert. Shift elements down while it

is smaller.



Insertion Sort Code

public static void insertionSort(int data[], int n) {

int numSorted = 1; // number of values in place

int index; // general index

while (numSorted < n) {

int temp = data[numSorted]; // first unsorted value

for (index = numSorted; index > 0; index--) {

if (temp < data[index-1]) {

data[index] = data[index-1];

} else {

break;

}

}

data[index] = temp; // reinsert value

numSorted++;

}

}



Insertion Sort Code

public static void insertionSort(int data[], int n) {

int numSorted = 1; // number of values in place

int index; // general index

while (numSorted < n) {

int temp = data[numSorted]; // first unsorted value

for (index = numSorted; index > 0; index--) {

if (temp < data[index-1]) {

data[index] = data[index-1];

} else {

break;

}

}

data[index] = temp; // reinsert value

numSorted++;

}

}

Can we get rid of the break command in this

code?



Insertion Sort Code # 2

public static void insertionSort(int data[], int n) {

int numSorted = 1; // number of values in place

while (numSorted < n) {

int temp = data[numSorted]; // first unsorted value

int index = numSorted;

while(index > 0 && temp < data[index - 1]) {

data[index] = data[index-1];

index--;

}

data[index] = temp; // reinsert value

numSorted++;

}

}



Tradeoff with Selection Sort

• No swap method needed

• Code is a little shorter

• Efficiency?

• Both take n iterations of the outer loop. What about the inner loop?
• Selection sort always iterates through n− i elements on the ith iteration
• Insertion sort may stop early! Can lead to better performance in practice (and is
never worse)

• To be clear: both are still O(n2) in terms of worst-case performance. Insertion

sort just has better constants, and better best-case performance



Tradeoff with Selection Sort

• No swap method needed

• Code is a little shorter

• Efficiency?

• Both take n iterations of the outer loop. What about the inner loop?
• Selection sort always iterates through n− i elements on the ith iteration
• Insertion sort may stop early! Can lead to better performance in practice (and is
never worse)

• To be clear: both are still O(n2) in terms of worst-case performance. Insertion

sort just has better constants, and better best-case performance



Tradeoff with Selection Sort

• No swap method needed

• Code is a little shorter

• Efficiency?

• Both take n iterations of the outer loop. What about the inner loop?
• Selection sort always iterates through n− i elements on the ith iteration
• Insertion sort may stop early! Can lead to better performance in practice (and is
never worse)

• To be clear: both are still O(n2) in terms of worst-case performance. Insertion

sort just has better constants, and better best-case performance



Tradeoff with Selection Sort

• No swap method needed

• Code is a little shorter

• Efficiency?

• Both take n iterations of the outer loop. What about the inner loop?
• Selection sort always iterates through n− i elements on the ith iteration
• Insertion sort may stop early! Can lead to better performance in practice (and is
never worse)

• To be clear: both are still O(n2) in terms of worst-case performance. Insertion

sort just has better constants, and better best-case performance



Sorting Objects



What do we need

• Reminder: we interact with objects using methods

• What methods do we need in order to sort objects?

• Need to be able to determine if one item is less than another

• Two ways that this may work. Both are good depending on use case.

• First: only sort objects of a type with a compareTo() method, allowing two
objects of that type to be compared

• Second: create a new method that allows us to compare the objects



What do we need

• Reminder: we interact with objects using methods

• What methods do we need in order to sort objects?

• Need to be able to determine if one item is less than another

• Two ways that this may work. Both are good depending on use case.

• First: only sort objects of a type with a compareTo() method, allowing two
objects of that type to be compared

• Second: create a new method that allows us to compare the objects



What do we need

• Reminder: we interact with objects using methods

• What methods do we need in order to sort objects?

• Need to be able to determine if one item is less than another

• Two ways that this may work. Both are good depending on use case.

• First: only sort objects of a type with a compareTo() method, allowing two
objects of that type to be compared

• Second: create a new method that allows us to compare the objects



What do we need

• Reminder: we interact with objects using methods

• What methods do we need in order to sort objects?

• Need to be able to determine if one item is less than another

• Two ways that this may work. Both are good depending on use case.

• First: only sort objects of a type with a compareTo() method, allowing two
objects of that type to be compared

• Second: create a new method that allows us to compare the objects



What do we need

• Reminder: we interact with objects using methods

• What methods do we need in order to sort objects?

• Need to be able to determine if one item is less than another

• Two ways that this may work. Both are good depending on use case.

• First: only sort objects of a type with a compareTo() method, allowing two
objects of that type to be compared

• Second: create a new method that allows us to compare the objects



What do we need

• Reminder: we interact with objects using methods

• What methods do we need in order to sort objects?

• Need to be able to determine if one item is less than another

• Two ways that this may work. Both are good depending on use case.

• First: only sort objects of a type with a compareTo() method, allowing two
objects of that type to be compared

• Second: create a new method that allows us to compare the objects



Sorting with compareTo

• Let’s add a compareTo() method to Student

• This method compares the name of this student

• How does this choice affect what a sorted vector looks like?

• Let’s try sorting Students with a compareTo method



Sorting with compareTo

• Let’s add a compareTo() method to Student

• This method compares the name of this student

• How does this choice affect what a sorted vector looks like?

• Let’s try sorting Students with a compareTo method



Sorting with compareTo

• Let’s add a compareTo() method to Student

• This method compares the name of this student

• How does this choice affect what a sorted vector looks like?

• Let’s try sorting Students with a compareTo method



Sorting with compareTo

• Let’s add a compareTo() method to Student

• This method compares the name of this student

• How does this choice affect what a sorted vector looks like?

• Let’s try sorting Students with a compareTo method



Making InsertionSort generic

• We never used the fact that this is a vector of students (other than the

compareTo() method

• What kind of types can we sort?

• We want this class to have a compareTo() method. How can we require this?

• With an interface!



Making InsertionSort generic

• We never used the fact that this is a vector of students (other than the

compareTo() method

• What kind of types can we sort?

• We want this class to have a compareTo() method. How can we require this?

• With an interface!



Making InsertionSort generic

• We never used the fact that this is a vector of students (other than the

compareTo() method

• What kind of types can we sort?

• We want this class to have a compareTo() method. How can we require this?

• With an interface!



Making InsertionSort generic

• We never used the fact that this is a vector of students (other than the

compareTo() method

• What kind of types can we sort?

• We want this class to have a compareTo() method. How can we require this?

• With an interface!



Comparable<T> Interface

• This is a Java interface, not structure5. (Built-in; don’t need to import

anything.)

• Comparable<T> has only one method: public int compareTo(T other)

• Let’s tell Java that our Student class implements this interface



Comparable<T> Interface

• This is a Java interface, not structure5. (Built-in; don’t need to import

anything.)

• Comparable<T> has only one method: public int compareTo(T other)

• Let’s tell Java that our Student class implements this interface



Comparable<T> Interface

• This is a Java interface, not structure5. (Built-in; don’t need to import

anything.)

• Comparable<T> has only one method: public int compareTo(T other)

• Let’s tell Java that our Student class implements this interface



Creating a generic sorting method

• We can make the InsertionSort class generic, but that seems a bit

nonspecific.

• Really: want to make one method generic. Can we do this in Java?

• Yes! Looks something like this:

• public static void <E> insertionSort(Vector<E> vec)

• Problem: can’t use any E. Needs to be comparable with other objects of type E



Creating a generic sorting method

• We can make the InsertionSort class generic, but that seems a bit

nonspecific.

• Really: want to make one method generic. Can we do this in Java?

• Yes! Looks something like this:

• public static void <E> insertionSort(Vector<E> vec)

• Problem: can’t use any E. Needs to be comparable with other objects of type E



Creating a generic sorting method

• We can make the InsertionSort class generic, but that seems a bit

nonspecific.

• Really: want to make one method generic. Can we do this in Java?

• Yes! Looks something like this:

• public static void <E> insertionSort(Vector<E> vec)

• Problem: can’t use any E. Needs to be comparable with other objects of type E



Creating a generic sorting method

• We can make the InsertionSort class generic, but that seems a bit

nonspecific.

• Really: want to make one method generic. Can we do this in Java?

• Yes! Looks something like this:

• public static void <E> insertionSort(Vector<E> vec)

• Problem: can’t use any E. Needs to be comparable with other objects of type E



Generic Upper Bounds

• Way to tell Java that a generic type needs to meet certain requirements

• That way, at compile time, Java can make sure our types match up

• These are called upper bounds

• Let’s say we only want to accept objects that meet the requirements of the
List interface. Rather than <E>, we write something like <E extends List>

• (Yes, it’s extends and not implements. There are some good back-end reasons
for this.)

• What do we want for our insertionSort method?

• Want <E extends Comparable<E>>

• That is to say: we want a type E that implements Comparable<E>. That is to say:
need that objects of type E have a compareTo method that takes objects of type
E as argument



Generic Upper Bounds

• Way to tell Java that a generic type needs to meet certain requirements

• That way, at compile time, Java can make sure our types match up

• These are called upper bounds

• Let’s say we only want to accept objects that meet the requirements of the
List interface. Rather than <E>, we write something like <E extends List>

• (Yes, it’s extends and not implements. There are some good back-end reasons
for this.)

• What do we want for our insertionSort method?

• Want <E extends Comparable<E>>

• That is to say: we want a type E that implements Comparable<E>. That is to say:
need that objects of type E have a compareTo method that takes objects of type
E as argument



Generic Upper Bounds

• Way to tell Java that a generic type needs to meet certain requirements

• That way, at compile time, Java can make sure our types match up

• These are called upper bounds

• Let’s say we only want to accept objects that meet the requirements of the
List interface. Rather than <E>, we write something like <E extends List>

• (Yes, it’s extends and not implements. There are some good back-end reasons
for this.)

• What do we want for our insertionSort method?

• Want <E extends Comparable<E>>

• That is to say: we want a type E that implements Comparable<E>. That is to say:
need that objects of type E have a compareTo method that takes objects of type
E as argument



Generic Upper Bounds

• Way to tell Java that a generic type needs to meet certain requirements

• That way, at compile time, Java can make sure our types match up

• These are called upper bounds

• Let’s say we only want to accept objects that meet the requirements of the
List interface. Rather than <E>, we write something like <E extends List>

• (Yes, it’s extends and not implements. There are some good back-end reasons
for this.)

• What do we want for our insertionSort method?

• Want <E extends Comparable<E>>

• That is to say: we want a type E that implements Comparable<E>. That is to say:
need that objects of type E have a compareTo method that takes objects of type
E as argument



Generic Upper Bounds

• Way to tell Java that a generic type needs to meet certain requirements

• That way, at compile time, Java can make sure our types match up

• These are called upper bounds

• Let’s say we only want to accept objects that meet the requirements of the
List interface. Rather than <E>, we write something like <E extends List>

• (Yes, it’s extends and not implements. There are some good back-end reasons
for this.)

• What do we want for our insertionSort method?

• Want <E extends Comparable<E>>

• That is to say: we want a type E that implements Comparable<E>. That is to say:
need that objects of type E have a compareTo method that takes objects of type
E as argument



Where we are

• Can sort any object so long as it implements Comparable<E>

• What are the downsides of this?

• What if we want to sort objects that aren’t already comparable and we don’t want
to modify the class?

• Can only sort objects one way. (What if we want to sort Students by grade?
Would need to rewrite the Student class!

• There are upsides as well; we’ll come back to this after we talk about

Comparators



Where we are

• Can sort any object so long as it implements Comparable<E>

• What are the downsides of this?

• What if we want to sort objects that aren’t already comparable and we don’t want
to modify the class?

• Can only sort objects one way. (What if we want to sort Students by grade?
Would need to rewrite the Student class!

• There are upsides as well; we’ll come back to this after we talk about

Comparators



Where we are

• Can sort any object so long as it implements Comparable<E>

• What are the downsides of this?

• What if we want to sort objects that aren’t already comparable and we don’t want
to modify the class?

• Can only sort objects one way. (What if we want to sort Students by grade?
Would need to rewrite the Student class!

• There are upsides as well; we’ll come back to this after we talk about

Comparators



Where we are

• Can sort any object so long as it implements Comparable<E>

• What are the downsides of this?

• What if we want to sort objects that aren’t already comparable and we don’t want
to modify the class?

• Can only sort objects one way. (What if we want to sort Students by grade?
Would need to rewrite the Student class!

• There are upsides as well; we’ll come back to this after we talk about

Comparators



Where we are

• Can sort any object so long as it implements Comparable<E>

• What are the downsides of this?

• What if we want to sort objects that aren’t already comparable and we don’t want
to modify the class?

• Can only sort objects one way. (What if we want to sort Students by grade?
Would need to rewrite the Student class!

• There are upsides as well; we’ll come back to this after we talk about

Comparators


	Sorting
	Insertion Sort
	Sorting Objects

