Sorting: Selection Sort and Insertion Sort

Instructors: Sam McCauley and Dan Barowy
March 7, 2022
Admin

- Any questions?
Sorting
How can we sort a set of items?

- Goal: sequence of steps
How can we sort a set of items?

- Goal: sequence of steps
- Guarantee that the cards are sorted at the end
How can we sort a set of items?

- Goal: sequence of steps
- Guarantee that the cards are sorted at the end
- We want to be able to:
How can we sort a set of items?

- Goal: sequence of steps
- Guarantee that the cards are sorted at the end
- We want to be able to:
 - Code it up in Java
How can we sort a set of items?

• Goal: sequence of steps

• Guarantee that the cards are sorted at the end

• We want to be able to:
 • Code it up in Java
 • Analyze the running time
Specifics

- Have an array of numbers

| 10 | 21 | -3 | 40 | 17 | 13 | 11 | -4 |
Specifics

- Have an array of numbers
- Want to sort them \textit{in place} (without copying to a new array)
Specifics

- Have an array of numbers
- Want to sort them *in place* (without copying to a new array)
 - In other words: sort them using $O(1)$ extra space.
Specifics

10 21 -3 40 17 13 11 -4

-3 -4 10 11 13 17 21 40

• Have an array of numbers

• Want to sort them *in place* (without copying to a new array)

 • In other words: sort them using $O(1)$ extra space.
Where to Start?

- Is there any number we can put directly in the correct place?

| 10 | 21 | -3 | 40 | 17 | 13 | 11 | -4 |

• We can put the largest number in the last slot
• Scan through the array to find the maximum number
• Time?
• $O(n)$
• Swap that number with the last number
Where to Start?

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>21</th>
<th>-3</th>
<th>40</th>
<th>17</th>
<th>13</th>
<th>11</th>
<th>-4</th>
</tr>
</thead>
</table>

- Is there any number we can put directly in the correct place?
- We can put the largest number in the last slot
Where to Start?

10 21 -3 40 17 13 11 -4

- Is there any number we can put directly in the correct place?
- We can put the largest number in the last slot
- Scan through the array to find the maximum number

Time?

$O(n)$

Swap that number with the last number.
Where to Start?

| 10 | 21 | -3 | 40 | 17 | 13 | 11 | -4 |

- Is there any number we can put directly in the correct place?
- We can put the largest number in the last slot
- Scan through the array to find the maximum number
 - Time?
Where to Start?

- Is there any number we can put directly in the correct place?
- We can put the largest number in the last slot
- Scan through the array to find the maximum number
 - Time?
 - $O(n)$
Where to Start?

| 10 | 21 | -3 | 40 | 17 | 13 | 11 | -4 |

• Is there any number we can put directly in the correct place?
• We can put the largest number in the last slot
• Scan through the array to find the maximum number
 • Time?
 • $O(n)$
• *Swap* that number with the last number

Maximum so far:
Where to Start?

- Is there any number we can put directly in the correct place?
- We can put the largest number in the last slot
- Scan through the array to find the maximum number
 - Time?
 - $O(n)$
- **Swap** that number with the last number

Maximum so far: 10 at pos 0
Where to Start?

- Is there any number we can put directly in the correct place?
- We can put the largest number in the last slot
- Scan through the array to find the maximum number
 - Time?
 - $O(n)$
- *Swap* that number with the last number

| 10 | 21 | -3 | 40 | 17 | 13 | 11 | -4 |

Maximum so far: 21 at pos 1
Where to Start?

Is there any number we can put directly in the correct place?

We can put the largest number in the last slot

Scan through the array to find the maximum number
 Time?
 $O(n)$

Swap that number with the last number

| 10 | 21 | -3 | 40 | 17 | 13 | 11 | -4 |

Maximum so far: 21 at pos 1
Where to Start?

- Is there any number we can put directly in the correct place?
- We can put the largest number in the last slot
- Scan through the array to find the maximum number
 - Time?
 - $O(n)$
- *Swap* that number with the last number

```
10 21 -3 40 17 13 11 -4
```

Maximum so far: 40 at pos 3
Where to Start?

- Is there any number we can put directly in the correct place?
- We can put the largest number in the last slot
- Scan through the array to find the maximum number
 - Time?
 - $O(n)$
- *Swap* that number with the last number

| 10 | 21 | -3 | 40 | 17 | 13 | 11 | -4 |

Maximum so far: 40 at pos 3
Where to Start?

- Is there any number we can put directly in the correct place?
- We can put the largest number in the last slot
- Scan through the array to find the maximum number
 - Time?
 - $O(n)$
- **Swap** that number with the last number

| 10 | 21 | -3 | 40 | 17 | 13 | 11 | -4 |

Maximum so far: 40 at pos 3
Where to Start?

10 21 -3 40 17 13 11 -4

- Is there any number we can put directly in the correct place?
- We can put the largest number in the last slot
- Scan through the array to find the maximum number
 - Time?
 - $O(n)$
 - Swapped that number with the last number

Maximum so far: 40 at pos 3
Where to Start?

- Is there any number we can put directly in the correct place?
- We can put the largest number in the last slot
- Scan through the array to find the maximum number
 - Time?
 - $O(n)$
 - Swap that number with the last number

Maximum so far: 40 at pos 3
Where to Start?

- Is there any number we can put directly in the correct place?
- We can put the largest number in the last slot
- Scan through the array to find the maximum number
 - Time?
 - $O(n)$
- *Swap* that number with the last number
Now what?

- Do it again! But now on all but the last element of the array
Now what?

- Do it again! But now on all but the last element of the array

- (This is essentially a recursive algorithm)
Selection Sort

Maximum so far: 10 at pos 0
Selection Sort

| 10 | 21 | -3 | -4 | 17 | 13 | 11 | 40 |

Maximum so far: 21 at pos 1
Selection Sort

10 21 -3 -4 17 13 11 40

Maximum so far: 21 at pos 1
Selection Sort

10 21 -3 -4 17 13 11 40

Maximum so far: 21 at pos 1
Selection Sort

| 10 | 21 | -3 | -4 | 17 | 13 | 11 | 40 |

Maximum so far: 21 at pos 1
Selection Sort

Maximum so far: 21 at pos 1
Selection Sort

Maximum so far: 21 at pos 1
Selection Sort

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>10</th>
<th>11</th>
<th>-3</th>
<th>-4</th>
<th>17</th>
<th>13</th>
<th>21</th>
<th>40</th>
</tr>
</thead>
</table>

Maximum so far: 10 at pos 0
Selection Sort

| 10 | 11 | -3 | -4 | 17 | 13 | 21 | 40 |

Maximum so far: 11 at pos 1
Selection Sort

| 10 | 11 | -3 | -4 | 17 | 13 | 21 | 40 |

Maximum so far: 11 at pos 1
Selection Sort

Maximum so far: 11 at pos 1
Selection Sort

| 10 | 11 | -3 | -4 | 17 | 13 | 21 | 40 |

Maximum so far: 17 at pos 4
Selection Sort

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>11</td>
<td>-3</td>
<td>-4</td>
<td>17</td>
<td>13</td>
<td>21</td>
<td>40</td>
</tr>
</tbody>
</table>

Maximum so far: 17 at pos 4
Selection Sort

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>11</td>
<td>-3</td>
<td>-4</td>
<td>17</td>
<td>13</td>
<td>21</td>
<td>40</td>
</tr>
</tbody>
</table>

Maximum so far: 17 at pos 4
Selection Sort

-3 -4 10 11 13 17 21 40
Let’s look at the code

- We’ll do loops, not recursion
Let’s look at the code

- We’ll do loops, not recursion

- Let’s assume we have a `swap(int[], int, int)` method that swaps two indices of an array
Selection Sort Code

```java
public static void selectionSort(int data[], int n) {
    int numUnsorted = n;
    int index; // general index
    int max; // index of largest value
    while (numUnsorted > 0) {
        // determine maximum value in array
        max = 0;
        for (index = 1; index < numUnsorted; index++) {
            if (data[max] < data[index]) max = index;
        }
        swap(data, max, numUnsorted-1);
        numUnsorted--;
    }
}
```
How can we prove that this works?

- Why does it work?

Idea: after the loop iterates \(i \) times,
- The last \(i \) slots of the array contain the \(i \) largest elements of the array in sorted order
- When \(i = n \) we are done

Prove using induction. (Kind of like recursive algorithms.)
How can we prove that this works?

- Why does it work?

- Idea: after the loop iterates i times,

 - The last i slots of the array contain the i largest elements of the array in sorted order
How can we prove that this works?

- Why does it work?

- Idea: after the loop iterates i times,
 - The last i slots of the array contain the i largest elements of the array in sorted order

- When $i = n$ we are done
How can we prove that this works?

- Why does it work?

- Idea: after the loop iterates i times,
 - The last i slots of the array contain the i largest elements of the array in sorted order

- When $i = n$ we are done

- Prove using induction. (Kind of like recursive algorithms.)
Proving Correctness by Induction

To show: for all $k \leq n$, after the loop iterates k times, the last k slots of the array contain the k largest elements of the array in sorted order.
To show: for all $k \leq n$, after the loop iterates k times, the last k slots of the array contain the k largest elements of the array in sorted order.

- Base case: $k = 0$. Already satisfied
Proving Correctness by Induction

To show: for all $k \leq n$, after the loop iterates k times, the last k slots of the array contain the k largest elements of the array in sorted order.

- Base case: $k = 0$. Already satisfied

- Inductive hypothesis: for some k, after the loop iterates k times, the last k slots of the array contain the k largest elements of the array in sorted order.
To show: for all $k \leq n$, after the loop iterates k times, the last k slots of the array contain the k largest elements of the array in sorted order.

- Base case: $k = 0$. Already satisfied

- Inductive hypothesis: for some k, after the loop iterates k times, the last k slots of the array contain the k largest elements of the array in sorted order.

- Inductive step: by the inductive hypothesis, after the kth iteration of the outer loop, the last k slots of the array contain the k largest array items in sorted order. We scan through the array and find the largest element excluding the last k slots; this is the $k + 1$st largest item. The swap moves it into the $k + 1$st slot from the end of the array.
Wrapping up selection sort

- Fill up the array from right to left with largest element

- How long does finding the maximum take?
 - $O(n - i + 1)$ time for the ith loop

- Summing:
 - $\sum_{i=1}^{n} O(n - i + 1) = \sum_{j=1}^{n} O(j) = O(n^2)$
Wrapping up selection sort

- Fill up the array from right to left with largest element

- How long does finding the maximum take?
Wrapping up selection sort

- Fill up the array from right to left with largest element

- How long does finding the maximum take?

 - $O(n - i + 1)$ time for the ith loop
Wrapping up selection sort

- Fill up the array from right to left with largest element

- How long does finding the maximum take?
 - $O(n - i + 1)$ time for the ith loop

- Summing: $\sum_{i=1}^{n} O(n - i + 1) = \sum_{j=1}^{n} O(j) = O(n^2)$
Insertion Sort
Insertion Sort

- Similar to Selection Sort
Insertion Sort

- Similar to Selection Sort

- Significantly more efficient in practice (we’ll come back to this)
Insertion Sort

• Similar to Selection Sort

• Significantly more efficient in practice (we’ll come back to this)

• This time we’ll start with why it works, and derive the algorithm
Insertion Sort

- A different approach to sorting
Insertion Sort

- A different approach to sorting
- After the kth loop, the first k items in the array are sorted
 - The first k items may not be the smallest—but they are in sorted order

- How can we guarantee this for $k = 1$?
 - Don't need to do anything
- Let's say it works for k. What does the $k+1$st loop need to accomplish to maintain the invariant?
 - Needs to insert the $k+1$st item among the first k items in sorted order.
Insertion Sort

- A different approach to sorting
- After the kth loop, the first k items in the array are sorted
 - The first k items may not be the smallest—but they are in sorted order
- How can we guarantee this for $k = 1$?
Insertion Sort

- A different approach to sorting
- After the kth loop, the first k items in the array are sorted
 - The first k items may not be the smallest—but they are in sorted order
- How can we guarantee this for $k = 1$?
 - Don’t need to do anything
Insertion Sort

- A different approach to sorting
- After the kth loop, the first k items in the array are sorted
 - The first k items may not be the smallest—but they are in sorted order
- How can we guarantee this for $k = 1$?
 - Don’t need to do anything
- Let’s say it works for k. What does the $k + 1$st loop need to accomplish to maintain the invariant?

| -3 | 10 | 21 | 40 | 17 | 13 | 11 | -4 |
Insertion Sort

- A different approach to sorting
- After the kth loop, the first k items in the array are sorted
 - The first k items may not be the smallest—but they are in sorted order
- How can we guarantee this for $k = 1$?
 - Don’t need to do anything
- Let’s say it works for k. What does the $k + 1$st loop need to accomplish to maintain the invariant?
 - Needs to insert the $k + 1$st item among the first k items in sorted order.
A Beautiful Way to Accomplish This

-3 10 17 21 40 13 11 -4

- Want to take the new item and move it into sorted position
A Beautiful Way to Accomplish This

-3 10 17 21 40 13 11 -4

- Want to take the new item and move it into sorted position

- Idea: need to move it down until the previous element is smaller
A Beautiful Way to Accomplish This

-3 10 17 21 40 13 11 -4

- Want to take the new item and move it into sorted position.

- Idea: need to move it down until the previous element is smaller.

- Inner loop: store element we are trying to insert. Shift elements down while it is smaller.
public static void insertionSort(int data[], int n) {
 int numSorted = 1; // number of values in place
 int index; // general index
 while (numSorted < n) {
 int temp = data[numSorted]; // first unsorted value
 for (index = numSorted; index > 0; index--) {
 if (temp < data[index-1]) {
 data[index] = data[index-1];
 } else {
 break;
 }
 }
 data[index] = temp; // reinsert value
 numSorted++;
 }
}
Insertion Sort Code

```java
public static void insertionSort(int data[], int n) {
    int numSorted = 1; // number of values in place
    int index; // general index
    while (numSorted < n) {
        int temp = data[numSorted]; // first unsorted value
        for (index = numSorted; index > 0; index--) {
            if (temp < data[index-1]) {
                data[index] = data[index-1];
            } else {
                break;
            }
        }
        data[index] = temp; // reinsert value
        numSorted++;
    }
}
```

Can we get rid of the `break` command in this code?
public static void insertionSort(int data[], int n) {
 int numSorted = 1; // number of values in place
 while (numSorted < n) {
 int temp = data[numSorted]; // first unsorted value
 int index = numSorted;
 while (index > 0 && temp < data[index - 1]) {
 data[index] = data[index-1];
 index--;
 }
 data[index] = temp; // reinsert value
 numSorted++;
 }
}
Tradeoff with Selection Sort

- No swap method needed
Tradeoff with Selection Sort

- No swap method needed
- Code is a little shorter
Tradeoff with Selection Sort

- No swap method needed
- Code is a little shorter

Efficiency?
- Both take n iterations of the outer loop. What about the inner loop?
- Selection sort *always* iterates through $n - i$ elements on the ith iteration
- Insertion sort may stop early! Can lead to better performance in practice (and is never worse)
Tradeoff with Selection Sort

- No swap method needed
- Code is a little shorter

Efficiency?
- Both take n iterations of the outer loop. What about the inner loop?
- Selection sort *always* iterates through $n - i$ elements on the ith iteration
- Insertion sort may stop early! Can lead to better performance in practice (and is never worse)

- To be clear: both are still $O(n^2)$ in terms of worst-case performance. Insertion sort just has better constants, and better best-case performance
Sorting Objects
What do we need

- Reminder: we interact with objects using methods
What do we need

- Reminder: we interact with objects using methods

- What methods do we need in order to sort objects?
What do we need

- Reminder: we interact with objects using **methods**

- What methods do we need in order to sort objects?

 - Need to be able to determine if one item is less than another
What do we need

• Reminder: we interact with objects using methods

• What methods do we need in order to sort objects?
 • Need to be able to determine if one item is less than another

• Two ways that this may work. Both are good depending on use case.
What do we need

• Reminder: we interact with objects using methods

• What methods do we need in order to sort objects?

 • Need to be able to determine if one item is less than another

• Two ways that this may work. Both are good depending on use case.

 • First: only sort objects of a type with a `compareTo()` method, allowing two objects of that type to be compared
What do we need

- Reminder: we interact with objects using methods

- What methods do we need in order to sort objects?
 - Need to be able to determine if one item is less than another

- Two ways that this may work. Both are good depending on use case.
 - First: only sort objects of a type with a `compareTo()` method, allowing two objects of that type to be compared
 - Second: create a new method that allows us to compare the objects
Sorting with `compareTo`

- Let’s add a `compareTo()` method to `Student`
Sorting with `compareTo`

- Let’s add a `compareTo()` method to `Student`

- This method compares the name of this student
Sorting with `compareTo`

- Let’s add a `compareTo()` method to `Student`
- This method compares the name of this student
- How does this choice affect what a sorted vector looks like?
Sorting with `compareTo`

- Let’s add a `compareTo()` method to `Student`

- This method compares the name of this student

- How does this choice affect what a sorted vector looks like?

- Let’s try sorting `Students` with a `compareTo` method
Making InsertionSort generic

- We never used the fact that this is a vector of students (other than the `compareTo()` method)
Making InsertionSort generic

- We never used the fact that this is a vector of students (other than the `compareTo()` method)

- What kind of types can we sort?
Making InsertionSort generic

- We never used the fact that this is a vector of students (other than the `compareTo()` method)

- What kind of types can we sort?

- We want this class to have a `compareTo()` method. How can we require this?
Making InsertionSort generic

- We never used the fact that this is a vector of students (other than the `compareTo()` method)

- What kind of types can we sort?

- We want this class to have a `compareTo()` method. How can we require this?

- With an interface!
Comparable\(<T>\) Interface

- This is a Java interface, *not structure5*. (Built-in; don’t need to import anything.)
Comparable<T> Interface

- This is a Java interface, *not structure5*. (Built-in; don’t need to import anything.)

- Comparable<T> has only one method: `public int compareTo(T other)`
Comparable\(<T>\) Interface

- This is a Java interface, *not structure5*. (Built-in; don’t need to import anything.)

- Comparable\(<T>\) has only one method: `public int compareTo(T other)`

- Let’s tell Java that our `Student` class implements this interface
Creating a generic sorting method

- We can make the InsertionSort class generic, but that seems a bit nonspecific.
Creating a generic sorting method

- We can make the `InsertionSort` class generic, but that seems a bit nonspecific.

- Really: want to make one method generic. Can we do this in Java?
Creating a generic sorting method

• We can make the InsertionSort class generic, but that seems a bit nonspecific.

• Really: want to make one method generic. Can we do this in Java?

• Yes! Looks something like this:
 • public static void <E> insertionSort(Vector<E> vec)
Creating a generic sorting method

- We can make the InsertionSort class generic, but that seems a bit nonspecific.

- Really: want to make one method generic. Can we do this in Java?

- Yes! Looks something like this:
 - public static void <E> insertionSort(Vector<E> vec)

- Problem: can’t use *any* E. Needs to be comparable with other objects of type E
Generic Upper Bounds

- Way to tell Java that a generic type needs to meet certain requirements

These are called upper bounds. Let's say we only want to accept objects that meet the requirements of the `List` interface. Rather than `<E>`, we write something like `<E extends List>`. (Yes, it's `extends` and not `implements`. There are some good back-end reasons for this.)

What do we want for our `insertionSort` method?

Want `<E extends Comparable<E>>`. That is to say: we want a type `E` that implements `Comparable<E>`. That is to say: need that objects of type `E` have a `compareTo` method that takes objects of type `E` as argument.
Generic Upper Bounds

- Way to tell Java that a generic type needs to meet certain requirements
- That way, at compile time, Java can make sure our types match up
Generic Upper Bounds

- Way to tell Java that a generic type needs to meet certain requirements
- That way, at compile time, Java can make sure our types match up
- These are called *upper bounds*
Generic Upper Bounds

- Way to tell Java that a generic type needs to meet certain requirements
- That way, at compile time, Java can make sure our types match up
- These are called **upper bounds**
- Let’s say we only want to accept objects that meet the requirements of the List interface. Rather than `<E>`, we write something like `<E extends List>`
 - *(Yes, it’s extends and not implements. There are some good back-end reasons for this.)*
Generic Upper Bounds

• Way to tell Java that a generic type needs to meet certain requirements
• That way, at compile time, Java can make sure our types match up
• These are called upper bounds
• Let’s say we only want to accept objects that meet the requirements of the List interface. Rather than <E>, we write something like <E extends List>
 • (Yes, it’s extends and not implements. There are some good back-end reasons for this.)
• What do we want for our insertionSort method?
 • Want <E extends Comparable<E>>
 • That is to say: we want a type E that implements Comparable<E>. That is to say: need that objects of type E have a compareTo method that takes objects of type E as argument
Where we are

- Can sort any object so long as it implements Comparable<E>
Where we are

- Can sort any object so long as it implements Comparable<E>
- What are the downsides of this?
Where we are

- Can sort any object so long as it implements `Comparable<E>`

- What are the downsides of this?

 - What if we want to sort objects that aren’t already comparable and we don’t want to modify the class?
Where we are

- Can sort any object so long as it implements `Comparable<E>`

- What are the downsides of this?

 - What if we want to sort objects that aren’t already comparable and we don’t want to modify the class?

 - Can only sort objects one way. (What if we want to sort `Student` objects by grade? Would need to rewrite the `Student` class!)
Where we are

- Can sort any object so long as it implements `Comparable<E>`

- What are the downsides of this?
 - What if we want to sort objects that aren’t already comparable and we don’t want to modify the class?
 - Can only sort objects one way. (What if we want to sort `Student` objects by grade? Would need to rewrite the `Student` class!)

- There are upsides as well; we’ll come back to this after we talk about Comparators