
OOP, static, generics,
Associations

Instructors: Sam McCauley and Dan Barowy

February 14, 2022



OOP Continued



Testing the Student Class

• You should never write more than 10–20 lines without testing

• 4–5 is better

• Let’s test out our Student class

• See some examples of making objects
• How classes interact



Testing the Student Class

public class TestStudent {

public static void main(String[] args) {

Student a = new Student(18, "Sam", ’B’);

Student b = new Student(19, "Bill L", ’A’);

// Some code to nicely print student details

System.out.println(a.getName() + ", " + a.getAge() + ", " +

a.getGrade());

System.out.println(b.getName() + ", " + b.getAge() + ", " +

b.getGrade());

}

}



Creating Students

• We can create as many Student objects as we need including arrays of

Students

Student[] section = new Student[3];

section[0] = new Student(18, "Huey", ’A’);

section[1] = new Student(20, "Dewey", ’B’);

section[2] = new Student(21, "Louie", ’A’);



Final Student Array Example

Student[] studentArray = new Student[4];

studentArray[0] = new Student(18, "Bill", ’B’);

studentArray[1] = new Student(19, "Sam", ’C’);

studentArray[2] = new Student(24, "Cathy", ’A’);

studentArray[3] = new Student(20, "Dev", ’A’);

//sort students

sortStudentsByGrade(studentArray);

//print students

for(int i = 0; i < studentArray.length; i++)

System.out.println(studentArray[i].getName() + ": " +

studentArray[i].getGrade());



Objects and Special Methods



Classes are Types

• Remember: a class is really is to tell Java what kind of object we’re dealing

with

• We’ll see later that one type may imply another

• Every Square is a Rectangle

• Every Student is a Person

• For now: every single object is also an Object

• What does that mean?



The Object class

• Object is a built-in class type in Java

• No instance variables!

• Three methods:

• public String toString()

• public bool equals(Object other)

• public bool int hashCode() (we won’t talk about this one until later)

• Every object is an Object, so every object has these methods!



toString()

• Returns a String representation of the object

• (Sound familiar to the pythoners out there?)

• Cool part: if we System.out.println() an object, this gets called

automatically

• Can we simplify our Student and TestStudent code with this in mind?



equals(Object other)

• How do we tell if two objects are equal?

• It’s going to depend on the object. For Student, we probably (only) check if

their names are equal

• the .equals(Object other) method takes another object as input, and

determines if the two objects are equal

• What happens if we use == to compare objects instead?

• We would instead be comparing if the objects have the same memory address
• I.e.: asks if it was created with the same new call
• Let’s look at an example with Student

• Always use .equals(), not ==, when you are comparing objects!



The Object class

• Every object is also an Object

• How can we use this?

• One thing we can do: store any object as an Object

• If we have a stored Object, how can we interact with it?

• Only with .toString() and .equals(Object other)

• Let’s store some Student objects as Object and see what happens

• Notation for casting: put the type in parentheses

• I.e.: Object newObj = (Object) s1; stores s1 as an Object



Writing a .equals method for Student

Let’s check if two students are equal

• Challenge: the argument to .equals() is an Object

• We want to check if the name is the same, but Object type does not have a

.getName()

• Solution: transform the other object into a Student first!



One Final OOP Gotcha with Scope

public class Student {

// instance variables

private int age;

private String name;

private char grade;

// A constructor

public Student(int age, String name, char grade) {

// What would age, name, grade

// refer to here...?

}

• Answer: it refers to the most local version



Solution: use this

public class Student {

// instance variables

private int age;

private String name;

private char grade;

public Student(int age, String name, char grade) {

this.age = age;

this.name = name;

this.grade = grade;

}

• this keyword specifies the current object (like self in python)

• Lots of strong feelings about the above syntax. You can use it if you want

• Some people always use this to refer to instance variables in Java. You don’t

have to unless you think it’s clearer.



static variables and methods



static variables

• A static variable is a property of the entire class, not a single object

• In other words: there’s only one copy of the variable

• We saw: each Student object has its own name variable

• Let’s add a static variable occupation to the class. (There is only one

occupation for all Student objects)

• What happens when we change occuption?

• To access a static variable, use the name of the class directly:

Student.occupation



static variables continued

• Can access static variables without creating an object of the type at all!

• Can set their values when they are declared.

• Can I also use the constructor to set their values?

• ...yes. But you probably don’t want to.
• After all, you may use a static variable before the constructor is called



static methods

• Like static variables: property of the entire class rather than a specific object

• Can be called without creating an object of the class!

• Java rule: you cannot access non-static variables from a static method. Why??

• The non-static variables are created when an object is created

• The static method may be called before any object is created!

• So if the static method accessed them, they may not exist yet! (Big problem)

• Why is main static?



static

Let’s look at some examples

• First, CoinStrip

• Let’s make a Triangle.java class to store a triangle


	OOP Continued
	Objects and Special Methods
	static variables and methods

