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Admin

• Questions or comments?



Javadoc Comments



Javadoc comments

• Unified way of commenting java code

• Allows others to more effectively understand what you’re doing

• Can generate html automatically!

• Some editors can use javadocs to help you code
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Where to use javadoc comments

• Official Oracle rules: every class, method, and instance variable

• We’ll be focusing on the methods: every method you write should have a

javadoc comment

• We’ll be checking for this this Lab 3 and beyond
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• Every new line starts with *. Finally ends with */.

• Tags denoted with @ character (examples on next slides). New line for each tag
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Required javadoc elements

• First line gives a short method description

• For every parameter in the method, need an @param tag that names the
parameter, and describes it

• Required even if obvious!

• If the method has a non-void return type, need an @return tag that describes
what is returned

• Required even if obvious!

• Two more (CS 136 only): @pre and @post for pre and post conditions
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Definition

• Pre conditions: what you are assuming is true before the method begins

• Post conditions: what you are assuming is now true after the method ends

• These are instructions for other people using your methods. You’re not

responsible for what happens if they ignore them!

• Let’s look at some examples
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Pre condition example: get

/**

* Fetch the element at a particular index.

* The index of the first element is zero.

*

* @param index the index of the value sought.

* @return A reference to the value found in the vector.

* @pre 0 <= index && index < size()

* @post Returns a reference to the value found in the vector.

*/

public E get(int index)

{

return (E)elementData[index];

}

Anyone calling this method must make sure that index is between 0 and size().



Post condition example: set

/**

* Change the value stored at location index.

*

* @param index The index of the new value.

* @param obj The new value to be stored.

* @return The value previously stored at index

* @pre 0 <= index && index < size()

* @post element value is changed to obj

* @post Returns the value previously stored at index

*/

public E set(int index, E obj)

{

E previous = (E)elementData[index];

elementData[index] = obj;

return previous;

}

Anyone calling this method must make sure that index is between 0 and size().



Return vs post

• You do need to include the return values as a post condition

• Yes it’s redundant (sorry!)

• @post is also for a change in state of the data (i.e. something done by the

method other than generating the return value). So you may need additional

postconditions
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Figuring out when to use pre and post conditions

• If someone calling this method can generate an error (with an empty string?

negative integer? etc.), there should be a precondition addressing this

• If the method accomplishes something other than returning a value, there

should be a postcondition

• Both (if they exist) should be listed in javadoc comments
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Assert

• structure5 package

• Java also has an assert keyword; we won’t use it in this class. Use the

structure5 Assert.

• Basic idea of Assert: works like an if statement. But if condition is true, gives
an error and exits the program.

• Why would we want this?

• Want to write easily debuggable code. If you need something to be true at a
certain point in your code, check it!
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Different methods inAssert

public static void pre(boolean test, String message);

public static void post(boolean test, String message);

public static void condition(boolean test, String message);

public static void fail(String message);

• pre: checks precondition; outputs message if false

• Assert.pre(0 <= index && index < size(),"index is within bounds");

• post, condition: same idea; slightly different output message

• fail: no condition; always exits
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When to use Assert

• Good to use if even a semi-plausible case where something bad happens

• If something would break your method, and isn’t listed as pre-condition,

should have an Assert

• It’s a good idea to use Asserts for pre-conditions to double-check things.
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If we have time: Another
asymptotic analysis example



Analyzing the Table class from wordgen

• Let’s say we have a table containing n Associations

• How long does add take?

• How long does choose take?

• Let’s say WordGen reads in a text of length n and generates n characters. Can

we upper bound how long that takes?
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