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Admin

• Lab 3 in!

• Lab 4 out this afternoon

• Partners again! Fill out opt-out form by this afternoon

• New kind of lab: refactoring existing code

• Masks still required

• Remember to come on time Friday for the quiz

• Look at graded responses; solutions on website under “Handouts”



Linked Lists



Motivating Example

• Let’s say we go to the movies

• But, the theater is very full. There are enough seats but we can’t all sit together

• How can I keep track of where all of you are sitting?

• One solution: keep a list of all of your seats

• Another option: I’ll keep track of one student. They keep track of the seat of

the next student. So on and so forth

• Each student remembers the location of the next student (or none if they are

the last). But I can still traverse all students!
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Linked List

• A new kind of List.

• So: will implement all the operations that a Vector implements

• (Looking ahead: will be faster for some operations; slower for others.)

• Uses the principle from the theater example: each piece of data remembers

the location of the next
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First step: Node

• A node of a linked list stores one piece of data

• What does it need to store?

• Needs to have the actual information

• Probably of generic type

• Also needs to store the location of the next piece of data

• That is to say: needs to hold the next Node
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Node

public class Node<E> {

protected E data

protected Node<E> nextElement;

public Node(E v, Node<E> next) {

data = v;

nextElement = next;

}

public void setNext(Node<E> next) {

nextElement = next;

}

public void setValue(E value) {

data = value;

}

public Node<E> next() {

return nextElement;

}

public E value() {

return data;

}

}



Creating a (Singly) Linked List

• We have a way to get from one Node to the next

• What else do we need to store?

• First Node

• Maybe some other useful List information? Perhaps the number of stored items

• And, then, need to implement methods
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SinglyLinkedList

public class SinglyLinkedList<E>

{

protected int count; // list size

public Node<E> head; // ref. to first element

public SinglyLinkedList()

{

head = null;

count = 0;

}

//to fill in: methods...



Where we are now

12

data nextElement

99

data nextElement

37 null

data nextElement

SinglyLinkedList.head

• Set of nodes linked to each other

• We just need to store the address of the first one (head).

• How can we perform contains()?
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Draft of contains

public boolean contains(E value) {

Node<E> current = head;

while(current != null) { //why == if these are objects?

if(value.equals(current.value())) {

return true;

}

}

return false;

}
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Plan for add?

• Where is the easiest place to add an item to our list?

• To the front

• What do we need to do to add an item value to our list?

• Create a Node<E> that holds value. Let’s call it newNode

• Set the nextElement of newNode to be the previous head

• Set the head to now point to nextElement

• Also: update count
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Singly Linked List Discussion

• What does the SinglyLinkedList object itself consist of?

• Only head and count!

• What’s the worst-case time for add()? (In terms of n, the length of the linked
list.)

• O(1). Just a constant number of operations. The length of the list never made a
difference.

• How can we implement set(int, E) and get(int)?

• How long do set(int, E) and get(int) take?

• If I have a Node<E> in the middle of my list, how long does it take to add a new

node after it?
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Motivating Recursion (Induction
Intro)



Goal of this section

• Chat about what makes a recursive algorithm correct

• We’ll get more formal about this on Friday
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Finding number of X in a string

public static int numX(String s) {

if(s.length() == 0) {

return 0;

}

if(s.charAt(s.lengt()-1) == ’X’) {

return 1 + numX(s.substring(0,s.length() - 1));

else {

return numX(s.substring(0,s.length() - 1));

}

}

How do we know that this method works correctly?
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Proving recursive correctness

• If s has length 1:

• We know that numX(s.substring(0,0)) returns 0 because we know that numX is
correct on strings of length 0.

• If the first character is X, we return 1+ 0 = 1.

• If the first character is not X, we return 0+ 0 = 0.

• In both cases we’re correct.

• So numX() works on strings of length at most 1.
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Proving recursive correctness

• If s has length 2:

• We know that numX(s.substring(0,1) is correct because we know that numX is
correct on strings of length 1.

• We add 1 if the first character is ’X’, 0 otherwise. So we are correct for strings of
length at most 2

• So numX() works on strings of length at most 2.
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Visualizing our Strategy

• How can we climb to the top of a ladder?

• Here’s a two step process:

• Figure out how to get on some rung of the ladder

• Figure out a method to get from one rung to the next rung

• If I do both of these, will I always make it to the top of the ladder?
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Our strategy

Ladder analogy: each step of the ladder is the length of the string in

our recursive method. We want to show that our method is correct

for a string of a certain length.

• Start with base case

Figure out how to get on the ladder

• Slowly argue that it works for larger and larger strings From one

rung of the ladder, how can we get to the next rung?
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