
Singly Linked Lists

Instructors: Sam McCauley and Dan Barowy

March 2, 2022



Admin

• Lab 3 in!

• Lab 4 out this afternoon

• Partners again! Fill out opt-out form by this afternoon

• New kind of lab: refactoring existing code

• Masks still required

• Remember to come on time Friday for the quiz

• Look at graded responses; solutions on website under “Handouts”



Linked Lists



Motivating Example

• Let’s say we go to the movies

• But, the theater is very full. There are enough seats but we can’t all sit together

• How can I keep track of where all of you are sitting?

• One solution: keep a list of all of your seats

• Another option: I’ll keep track of one student. They keep track of the seat of

the next student. So on and so forth

• Each student remembers the location of the next student (or none if they are

the last). But I can still traverse all students!



Motivating Example

• Let’s say we go to the movies

• But, the theater is very full. There are enough seats but we can’t all sit together

• How can I keep track of where all of you are sitting?

• One solution: keep a list of all of your seats

• Another option: I’ll keep track of one student. They keep track of the seat of

the next student. So on and so forth

• Each student remembers the location of the next student (or none if they are

the last). But I can still traverse all students!



Motivating Example

• Let’s say we go to the movies

• But, the theater is very full. There are enough seats but we can’t all sit together

• How can I keep track of where all of you are sitting?

• One solution: keep a list of all of your seats

• Another option: I’ll keep track of one student. They keep track of the seat of

the next student. So on and so forth

• Each student remembers the location of the next student (or none if they are

the last). But I can still traverse all students!



Motivating Example

• Let’s say we go to the movies

• But, the theater is very full. There are enough seats but we can’t all sit together

• How can I keep track of where all of you are sitting?

• One solution: keep a list of all of your seats

• Another option: I’ll keep track of one student. They keep track of the seat of

the next student. So on and so forth

• Each student remembers the location of the next student (or none if they are

the last). But I can still traverse all students!



Motivating Example

• Let’s say we go to the movies

• But, the theater is very full. There are enough seats but we can’t all sit together

• How can I keep track of where all of you are sitting?

• One solution: keep a list of all of your seats

• Another option: I’ll keep track of one student. They keep track of the seat of

the next student. So on and so forth

• Each student remembers the location of the next student (or none if they are

the last). But I can still traverse all students!



Motivating Example

• Let’s say we go to the movies

• But, the theater is very full. There are enough seats but we can’t all sit together

• How can I keep track of where all of you are sitting?

• One solution: keep a list of all of your seats

• Another option: I’ll keep track of one student. They keep track of the seat of

the next student. So on and so forth

• Each student remembers the location of the next student (or none if they are

the last). But I can still traverse all students!



Linked List

• A new kind of List.

• So: will implement all the operations that a Vector implements

• (Looking ahead: will be faster for some operations; slower for others.)

• Uses the principle from the theater example: each piece of data remembers

the location of the next



Linked List

• A new kind of List.

• So: will implement all the operations that a Vector implements

• (Looking ahead: will be faster for some operations; slower for others.)

• Uses the principle from the theater example: each piece of data remembers

the location of the next



Linked List

• A new kind of List.

• So: will implement all the operations that a Vector implements

• (Looking ahead: will be faster for some operations; slower for others.)

• Uses the principle from the theater example: each piece of data remembers

the location of the next



Linked List

• A new kind of List.

• So: will implement all the operations that a Vector implements

• (Looking ahead: will be faster for some operations; slower for others.)

• Uses the principle from the theater example: each piece of data remembers

the location of the next



First step: Node

• A node of a linked list stores one piece of data

• What does it need to store?

• Needs to have the actual information

• Probably of generic type

• Also needs to store the location of the next piece of data

• That is to say: needs to hold the next Node



First step: Node

• A node of a linked list stores one piece of data

• What does it need to store?

• Needs to have the actual information

• Probably of generic type

• Also needs to store the location of the next piece of data

• That is to say: needs to hold the next Node



First step: Node

• A node of a linked list stores one piece of data

• What does it need to store?

• Needs to have the actual information

• Probably of generic type

• Also needs to store the location of the next piece of data

• That is to say: needs to hold the next Node



First step: Node

• A node of a linked list stores one piece of data

• What does it need to store?

• Needs to have the actual information

• Probably of generic type

• Also needs to store the location of the next piece of data

• That is to say: needs to hold the next Node



First step: Node

• A node of a linked list stores one piece of data

• What does it need to store?

• Needs to have the actual information

• Probably of generic type

• Also needs to store the location of the next piece of data

• That is to say: needs to hold the next Node



First step: Node

• A node of a linked list stores one piece of data

• What does it need to store?

• Needs to have the actual information

• Probably of generic type

• Also needs to store the location of the next piece of data

• That is to say: needs to hold the next Node



Node

public class Node<E> {

protected E data

protected Node<E> nextElement;

public Node(E v, Node<E> next) {

data = v;

nextElement = next;

}

public void setNext(Node<E> next) {

nextElement = next;

}

public void setValue(E value) {

data = value;

}

public Node<E> next() {

return nextElement;

}

public E value() {

return data;

}

}



Creating a (Singly) Linked List

• We have a way to get from one Node to the next

• What else do we need to store?

• First Node

• Maybe some other useful List information? Perhaps the number of stored items

• And, then, need to implement methods



Creating a (Singly) Linked List

• We have a way to get from one Node to the next

• What else do we need to store?

• First Node

• Maybe some other useful List information? Perhaps the number of stored items

• And, then, need to implement methods



Creating a (Singly) Linked List

• We have a way to get from one Node to the next

• What else do we need to store?

• First Node

• Maybe some other useful List information? Perhaps the number of stored items

• And, then, need to implement methods



Creating a (Singly) Linked List

• We have a way to get from one Node to the next

• What else do we need to store?

• First Node

• Maybe some other useful List information? Perhaps the number of stored items

• And, then, need to implement methods



Creating a (Singly) Linked List

• We have a way to get from one Node to the next

• What else do we need to store?

• First Node

• Maybe some other useful List information? Perhaps the number of stored items

• And, then, need to implement methods



SinglyLinkedList

public class SinglyLinkedList<E>

{

protected int count; // list size

public Node<E> head; // ref. to first element

public SinglyLinkedList()

{

head = null;

count = 0;

}

//to fill in: methods...



Where we are now

12

data nextElement

99

data nextElement

37 null

data nextElement

SinglyLinkedList.head

• Set of nodes linked to each other

• We just need to store the address of the first one (head).

• How can we perform contains()?



Where we are now

12

data nextElement

99

data nextElement

37 null

data nextElement

SinglyLinkedList.head

• Set of nodes linked to each other

• We just need to store the address of the first one (head).

• How can we perform contains()?



Where we are now

12

data nextElement

99

data nextElement

37 null

data nextElement

SinglyLinkedList.head

• Set of nodes linked to each other

• We just need to store the address of the first one (head).

• How can we perform contains()?



Where we are now

12

data nextElement

99

data nextElement

37 null

data nextElement

SinglyLinkedList.head

• Set of nodes linked to each other

• We just need to store the address of the first one (head).

• How can we perform contains()?



Where we are now

12

data nextElement

99

data nextElement

37 null

data nextElement

SinglyLinkedList.head

• Set of nodes linked to each other

• We just need to store the address of the first one (head).

• How can we perform contains()?



Draft of contains

public boolean contains(E value) {

Node<E> current = head;

while(current != null) { //why == if these are objects?

if(value.equals(current.value())) {

return true;

}

}

return false;

}



Contains Diagram

12

data nextElement

99

data nextElement

37 null

data nextElement

SinglyLinkedList.head

current

null



Contains Diagram

12

data nextElement

99

data nextElement

37 null

data nextElement

SinglyLinkedList.head

current

null



Contains Diagram

12

data nextElement

99

data nextElement

37 null

data nextElement

SinglyLinkedList.head

current

null



Contains Diagram

12

data nextElement

99

data nextElement

37 null

data nextElement

SinglyLinkedList.head

current
null



Plan for add?

• Where is the easiest place to add an item to our list?

• To the front

• What do we need to do to add an item value to our list?

• Create a Node<E> that holds value. Let’s call it newNode

• Set the nextElement of newNode to be the previous head

• Set the head to now point to nextElement

• Also: update count



Plan for add?

• Where is the easiest place to add an item to our list?

• To the front

• What do we need to do to add an item value to our list?

• Create a Node<E> that holds value. Let’s call it newNode

• Set the nextElement of newNode to be the previous head

• Set the head to now point to nextElement

• Also: update count



Plan for add?

• Where is the easiest place to add an item to our list?

• To the front

• What do we need to do to add an item value to our list?

• Create a Node<E> that holds value. Let’s call it newNode

• Set the nextElement of newNode to be the previous head

• Set the head to now point to nextElement

• Also: update count



Plan for add?

• Where is the easiest place to add an item to our list?

• To the front

• What do we need to do to add an item value to our list?

• Create a Node<E> that holds value. Let’s call it newNode

• Set the nextElement of newNode to be the previous head

• Set the head to now point to nextElement

• Also: update count



Plan for add?

• Where is the easiest place to add an item to our list?

• To the front

• What do we need to do to add an item value to our list?

• Create a Node<E> that holds value. Let’s call it newNode

• Set the nextElement of newNode to be the previous head

• Set the head to now point to nextElement

• Also: update count



Plan for add?

• Where is the easiest place to add an item to our list?

• To the front

• What do we need to do to add an item value to our list?

• Create a Node<E> that holds value. Let’s call it newNode

• Set the nextElement of newNode to be the previous head

• Set the head to now point to nextElement

• Also: update count



Plan for add?

• Where is the easiest place to add an item to our list?

• To the front

• What do we need to do to add an item value to our list?

• Create a Node<E> that holds value. Let’s call it newNode

• Set the nextElement of newNode to be the previous head

• Set the head to now point to nextElement

• Also: update count



Add Diagram (Adding 17)

12

data nextElement

99

data nextElement

37 null

data nextElement

SinglyLinkedList.head

17



Add Diagram (Adding 17)

12

data nextElement

99

data nextElement

37 null

data nextElement

SinglyLinkedList.head

17



Add Diagram (Adding 17)

12

data nextElement

99

data nextElement

37 null

data nextElement

SinglyLinkedList.head

17



Singly Linked List Discussion

• What does the SinglyLinkedList object itself consist of?

• Only head and count!

• What’s the worst-case time for add()? (In terms of n, the length of the linked
list.)

• O(1). Just a constant number of operations. The length of the list never made a
difference.

• How can we implement set(int, E) and get(int)?

• How long do set(int, E) and get(int) take?

• If I have a Node<E> in the middle of my list, how long does it take to add a new

node after it?



Singly Linked List Discussion

• What does the SinglyLinkedList object itself consist of?

• Only head and count!

• What’s the worst-case time for add()? (In terms of n, the length of the linked
list.)

• O(1). Just a constant number of operations. The length of the list never made a
difference.

• How can we implement set(int, E) and get(int)?

• How long do set(int, E) and get(int) take?

• If I have a Node<E> in the middle of my list, how long does it take to add a new

node after it?



Singly Linked List Discussion

• What does the SinglyLinkedList object itself consist of?

• Only head and count!

• What’s the worst-case time for add()? (In terms of n, the length of the linked
list.)

• O(1). Just a constant number of operations. The length of the list never made a
difference.

• How can we implement set(int, E) and get(int)?

• How long do set(int, E) and get(int) take?

• If I have a Node<E> in the middle of my list, how long does it take to add a new

node after it?



Singly Linked List Discussion

• What does the SinglyLinkedList object itself consist of?

• Only head and count!

• What’s the worst-case time for add()? (In terms of n, the length of the linked
list.)

• O(1). Just a constant number of operations. The length of the list never made a
difference.

• How can we implement set(int, E) and get(int)?

• How long do set(int, E) and get(int) take?

• If I have a Node<E> in the middle of my list, how long does it take to add a new

node after it?



Singly Linked List Discussion

• What does the SinglyLinkedList object itself consist of?

• Only head and count!

• What’s the worst-case time for add()? (In terms of n, the length of the linked
list.)

• O(1). Just a constant number of operations. The length of the list never made a
difference.

• How can we implement set(int, E) and get(int)?

• How long do set(int, E) and get(int) take?

• If I have a Node<E> in the middle of my list, how long does it take to add a new

node after it?



Singly Linked List Discussion

• What does the SinglyLinkedList object itself consist of?

• Only head and count!

• What’s the worst-case time for add()? (In terms of n, the length of the linked
list.)

• O(1). Just a constant number of operations. The length of the list never made a
difference.

• How can we implement set(int, E) and get(int)?

• How long do set(int, E) and get(int) take?

• If I have a Node<E> in the middle of my list, how long does it take to add a new

node after it?



Singly Linked List Discussion

• What does the SinglyLinkedList object itself consist of?

• Only head and count!

• What’s the worst-case time for add()? (In terms of n, the length of the linked
list.)

• O(1). Just a constant number of operations. The length of the list never made a
difference.

• How can we implement set(int, E) and get(int)?

• How long do set(int, E) and get(int) take?

• If I have a Node<E> in the middle of my list, how long does it take to add a new

node after it?



Motivating Recursion (Induction
Intro)



Goal of this section

• Chat about what makes a recursive algorithm correct

• We’ll get more formal about this on Friday



Goal of this section

• Chat about what makes a recursive algorithm correct

• We’ll get more formal about this on Friday



Finding number of X in a string

public static int numX(String s) {

if(s.length() == 0) {

return 0;

}

if(s.charAt(s.lengt()-1) == ’X’) {

return 1 + numX(s.substring(0,s.length() - 1));

else {

return numX(s.substring(0,s.length() - 1));

}

}

How do we know that this method works correctly?



Finding number of X in a string

public static int numX(String s) {

if(s.length() == 0) {

return 0;

}

if(s.charAt(s.lengt()-1) == ’X’) {

return 1 + numX(s.substring(0,s.length() - 1));

else {

return numX(s.substring(0,s.length() - 1));

}

}

How do we know that this method works correctly?



Where to start?

public static int numX(String s) {

if(s.length() == 0) {

return 0;

}

if(s.charAt(s.lengt()-1) == ’X’) {

return 1 + numX(s.substring(0,s.length() - 1));

else {

return numX(s.substring(0,s.length() - 1));

}

}

• If s has length 0, then this algorithm correctly returns 0.

• What if s has length 1?



Where to start?

public static int numX(String s) {

if(s.length() == 0) {

return 0;

}

if(s.charAt(s.lengt()-1) == ’X’) {

return 1 + numX(s.substring(0,s.length() - 1));

else {

return numX(s.substring(0,s.length() - 1));

}

}

• If s has length 0, then this algorithm correctly returns 0.

• What if s has length 1?



Where to start?

public static int numX(String s) {

if(s.length() == 0) {

return 0;

}

if(s.charAt(s.lengt()-1) == ’X’) {

return 1 + numX(s.substring(0,s.length() - 1));

else {

return numX(s.substring(0,s.length() - 1));

}

}

• If s has length 0, then this algorithm correctly returns 0.

• What if s has length 1?



Proving recursive correctness

• If s has length 1:

• We know that numX(s.substring(0,0)) returns 0 because we know that numX is
correct on strings of length 0.

• If the first character is X, we return 1+ 0 = 1.

• If the first character is not X, we return 0+ 0 = 0.

• In both cases we’re correct.

• So numX() works on strings of length at most 1.



Proving recursive correctness

• If s has length 1:

• We know that numX(s.substring(0,0)) returns 0 because we know that numX is
correct on strings of length 0.

• If the first character is X, we return 1+ 0 = 1.

• If the first character is not X, we return 0+ 0 = 0.

• In both cases we’re correct.

• So numX() works on strings of length at most 1.



Proving recursive correctness

• If s has length 1:

• We know that numX(s.substring(0,0)) returns 0 because we know that numX is
correct on strings of length 0.

• If the first character is X, we return 1+ 0 = 1.

• If the first character is not X, we return 0+ 0 = 0.

• In both cases we’re correct.

• So numX() works on strings of length at most 1.



Proving recursive correctness

• If s has length 1:

• We know that numX(s.substring(0,0)) returns 0 because we know that numX is
correct on strings of length 0.

• If the first character is X, we return 1+ 0 = 1.

• If the first character is not X, we return 0+ 0 = 0.

• In both cases we’re correct.

• So numX() works on strings of length at most 1.



Proving recursive correctness

• If s has length 1:

• We know that numX(s.substring(0,0)) returns 0 because we know that numX is
correct on strings of length 0.

• If the first character is X, we return 1+ 0 = 1.

• If the first character is not X, we return 0+ 0 = 0.

• In both cases we’re correct.

• So numX() works on strings of length at most 1.



Proving recursive correctness

• If s has length 1:

• We know that numX(s.substring(0,0)) returns 0 because we know that numX is
correct on strings of length 0.

• If the first character is X, we return 1+ 0 = 1.

• If the first character is not X, we return 0+ 0 = 0.

• In both cases we’re correct.

• So numX() works on strings of length at most 1.



Proving recursive correctness

• If s has length 2:

• We know that numX(s.substring(0,1) is correct because we know that numX is
correct on strings of length 1.

• We add 1 if the first character is ’X’, 0 otherwise. So we are correct for strings of
length at most 2

• So numX() works on strings of length at most 2.



Proving recursive correctness

• If s has length 2:

• We know that numX(s.substring(0,1) is correct because we know that numX is
correct on strings of length 1.

• We add 1 if the first character is ’X’, 0 otherwise. So we are correct for strings of
length at most 2

• So numX() works on strings of length at most 2.



Proving recursive correctness

• If s has length 2:

• We know that numX(s.substring(0,1) is correct because we know that numX is
correct on strings of length 1.

• We add 1 if the first character is ’X’, 0 otherwise. So we are correct for strings of
length at most 2

• So numX() works on strings of length at most 2.



Proving recursive correctness

• If s has length 2:

• We know that numX(s.substring(0,1) is correct because we know that numX is
correct on strings of length 1.

• We add 1 if the first character is ’X’, 0 otherwise. So we are correct for strings of
length at most 2

• So numX() works on strings of length at most 2.



Our strategy

• Start with base case

• Slowly argue that it works for larger and larger strings



Our strategy

• Start with base case

• Slowly argue that it works for larger and larger strings



Visualizing our Strategy

• How can we climb to the top of a ladder?

• Here’s a two step process:

• Figure out how to get on some rung of the ladder

• Figure out a method to get from one rung to the next rung

• If I do both of these, will I always make it to the top of the ladder?



Visualizing our Strategy

• How can we climb to the top of a ladder?

• Here’s a two step process:

• Figure out how to get on some rung of the ladder

• Figure out a method to get from one rung to the next rung

• If I do both of these, will I always make it to the top of the ladder?



Visualizing our Strategy

• How can we climb to the top of a ladder?

• Here’s a two step process:

• Figure out how to get on some rung of the ladder

• Figure out a method to get from one rung to the next rung

• If I do both of these, will I always make it to the top of the ladder?



Visualizing our Strategy

• How can we climb to the top of a ladder?

• Here’s a two step process:

• Figure out how to get on some rung of the ladder

• Figure out a method to get from one rung to the next rung

• If I do both of these, will I always make it to the top of the ladder?



Visualizing our Strategy

• How can we climb to the top of a ladder?

• Here’s a two step process:

• Figure out how to get on some rung of the ladder

• Figure out a method to get from one rung to the next rung

• If I do both of these, will I always make it to the top of the ladder?



Our strategy

Ladder analogy: each step of the ladder is the length of the string in

our recursive method. We want to show that our method is correct

for a string of a certain length.

• Start with base case

Figure out how to get on the ladder

• Slowly argue that it works for larger and larger strings From one

rung of the ladder, how can we get to the next rung?



Our strategy

Ladder analogy: each step of the ladder is the length of the string in

our recursive method. We want to show that our method is correct

for a string of a certain length.

• Start with base case Figure out how to get on the ladder

• Slowly argue that it works for larger and larger strings From one

rung of the ladder, how can we get to the next rung?



Our strategy

Ladder analogy: each step of the ladder is the length of the string in

our recursive method. We want to show that our method is correct

for a string of a certain length.

• Start with base case Figure out how to get on the ladder

• Slowly argue that it works for larger and larger strings

From one

rung of the ladder, how can we get to the next rung?



Our strategy

Ladder analogy: each step of the ladder is the length of the string in

our recursive method. We want to show that our method is correct

for a string of a certain length.

• Start with base case Figure out how to get on the ladder

• Slowly argue that it works for larger and larger strings From one

rung of the ladder, how can we get to the next rung?


	Linked Lists
	Motivating Recursion (Induction Intro)

