
Iterators

Instructors: Sam McCauley and Dan Barowy

April 10, 2022



Admin

• Midterm back today (after iterators)

• Any questions?



Iterators



Traversing a data structure

• Let’s say I want to print all of the positive elements of a sequence of integers

• How would I do this?



Traversing a Vector

public static void printPositive(Vector<Integer> vec) {

for(int i = 0; i < vec.size(); i++) {

if(vec.get(i) > 0) {

System.out.println(vec.get(i));

}

}

}

Pretty straightforward for a vector. Can we generalize this so that it works for any

sequence of items?

• Sure! We’re only using List operations in the above



Traversing a List

public static void printPositive(List<Integer> l) {

for(int i = 0; i < l.size(); i++) {

if(l.get(i) > 0) {

System.out.println(vec.get(i));

}

}

}

This does work fine. What’s a downside of this?

• What’s the running time if l is a linked list?

• O(n2)! (Each get call is O(n))

• Can we fix this? Of course.



Traversing a Linked List

public static void printPositive(SinglyLinkedList<Integer> l) {

Node<Integer> current = l.head;

while(current != null) {

int value = current.value();

if(value > 0) {

System.out.println(value);

}

current = current.next();

}

}

Does this work?

• No; not as-is. head is protected.

• We could use inheritance to create a TraversableSinglyLinkedList that

supports this somehow...seems annnoying



The problem

• Traversing a linear data structure is a fundamental operation that we’ll want to

do all the time

• Each new data structure needs to be traversed in a new way

• That’s terrible in terms of the goal of OOP!



Iterator

• A unified way to traverse java data structures

• Goal: want to be able to create a class whose job it is to traverse a particular

data structure

• Use an Interface to group these classes together. In other words: an interface

for classes that traverse data structures

• What methods do we want such a class type to have?

• next(): gets the next item in the data structure

• hasNext(): checks to see if the next item exists

• Sounds familiar? You’ve used iterators a number of times already in this

class...

• Scanner, Reader (in this lab)



Purpose of Iterator

• We can pass around an iterator itself (the same way we can pass around a

Scanner)

• It has the ability to get us the next element from the data structure—and to

determine if such an element is available.

• The iterator knows how to traverse the data structure

• Many data structures have an iterator() method that returns a basic iterator

to traverse the list

• Let’s rewrite our method so that it works with any iterator



Traversing Using an Iterator

public static void printPositive(Iterator<Integer> it) {

while(it.hasNext()) {

int value = it.next();

if(value > 0) {

System.out.println(value);

}

}

}

How can we use this?

//let’s say vec is a Vector<Integer>

printPositive(vec.iterator());

//let’s say sll is a SinglyLinkedList<Integer>

printPositive(sll.iterator());



Trying out some code

• First: let’s try out actually using an iterator

• Goal: sum all the items in list of integers

• Let’s do it using a while loop and using a for loop



Defining the Iterator〈E〉 interface

• Need to import java.util.Iterator

• Methods:

• boolean hasNext()

• E next()

• remove()

• Use carefully (or not at all)

• By default just throws an error



Abstract Iterator

• A structure5 abstract class to fill in some iterator pieces

• Gives a useful reset() method



Let’s make a couple practice iterators

• First: iterator to traverse from the tail to the head of a DoublyLinkedList

• Can we make an iterator that takes another iterator as an argument, and gives
its elements in reverse order? (OK if destroys original iterator)

• Would need to store them

• What data structure would be best to use?



Iterable Interface

• Most of the data structures we’ve seen have a built-in iterator() method

• Very handy—we shouldn’t have to make our own class to iterate over a Vector;

people do that all the time

• We can imagine writing code that works on any data structure with such a

method (in fact, we already did so, but we required it was a List

• Iterable<T> is an interface

• Built-in; no import needed

• One required method: Iterator<T> iterator()



Iterable data structures

Structure<E> extends Iterable<E>, so all of these are iterable

(Arrays are too)



for each loops

int[] grades = { 100, 78, 92, 87, 89, 90 };

int sum = 0;

for (int g : grades)

sum += g;

• For-each loops work using iterators!

• Can do the above with any Iterable data structure



for each loops

Stack<String> strStack = new StackList<String>();

strStack.push("0");

strStack.push("1");

strStack.push("2");

strStack.push("3");

strStack.push("4");

for (String s : strStack)

System.out.println(s);

Let’s look at the StackList code that’s used here.



Care about iterators

• Like for-each loops, iterators work best on data structures that are not

changing

• Be very careful about changing the data structure while iterating over it!



Generalizing iterators

• Bear in mind: anything with a hasNext() and next() method is an iterator

• It’s often used for iterating over a data structure, but doesn’t have to be

• (If we have time): Let’s make an iterator that prints the Fibonacci numbers



Midterm Comments



Reminder: resubmissions

• You have two resubmissions in this course

• Can be used for any lab, or for the midterm

• Basic idea: correct any mistakes you made and you can get points back

• Formal requirements in handout on website (soon), and on paper right now.

Also giving you an example of what a good resubmission looks like

• Due at the end of the semester.

• We designed the midterm knowing that you can do this. If you got (for

example) a 70, you can get 15 points back to make it up to an 85.



Midterm performance overall

• Average and median were in the 70s

• Reasonable range from our perspective considering regrades

• Bear in mind: only worth 25% of your final grade. Same as the final; much less

than labs



Questions/Comments/Etc.

• Please do check through your midterm to make sure that we haven’t missed

anything, double check our math, etc.

• We’re always happy to explain what we thought was wrong with an answer or

how we mapped various errors to point values

• We’re almost never going to be willing to change that mapping

• In short: there are 60 of you and many students probably made the same
mistake. We gave the same points to everyone with equivalent answers

• So: please do come, especially if something seems off or if you’re confused!

But we want to be clear about likely outcomes.


	Iterators
	Midterm Comments

