Inheritance and Stack
Applications

Instructors: Sam McCauley and Dan Barowy
April 6, 2022

Admin

e Remember to fill out the partner form this morning (asap if haven’t done so
far).

e Any questions?

Inheritance

Inheritance

We've been building towards inheritance throughout the course

Seen it (and used it) a couple times

Let’s talk about it a bit more formally

You'll use inheritance in Lab 9 (we’ll revisit it briefly right before then)

Creating a Subclass

Use the extends keyword

The subclass that you write inherits the fields (instance variables, static
variables, etc.) and methods of the parent class

Cannot access the private members of the parent class.

e They're still there, and can be accessed by parent class methods

e Can access protected members

In short: subclasses allow us to add functionality to a class without rewriting it

e Can also refine classes for specific scenerios

Inheritance and Constructors Intro

e The subclass automatically calls the default constructor of the parent class

e Or, can use the super keyword on the first line of the constructor to call a
different parent class constructor

e We'll come back to this before Lab @

Example

I want to keep track of 136 students in a course

136 students have name, ID, grade just like any other student

They also have ten lab grades

e How can we make a StudentIn136 class?

e One option: just write it out

e Much easier: use inheritance! Let’s take a look

Class Types and Inheritance

e Every object of a class is also an object of the parent class

e S0: a StudentInl36 is also a student

e We can, for example, sort Studentin136s using the code we wrote a few weeks
ago. Let's see an example of that.

Example 2: MyVector

e You created a MyVector class: a Vector that can also sort

e Your MyVector class could access any public Vector methods. (Could also
access protected methods.)

e The datal[] array is private. What happens if we try to access it directly?

e The underlying array is a good example of when we want a variable to be
private instead of protected: we really don’t want anyone accessing it, even
subclasses; any changes they want to make can be through the Vector
interface

Inheritance

Inheritance is perhaps the main reason people use object oriented
programming

So far: objects and class types help us create self-contained pieces of code
that can help us store data about a single concept or accomplish a single task

With inheritance: we have an easy way to modify our code for a new task

Saves us work!

Setting Up Java Class Hierarchy

e Every class has exactly one parent class
e Cannot inherit from two different classes in Java!

e If you do not state any parent class, then Object is the parent class

e So every class has a parent class, which has a parent class, which has a parent
class, ..., which has Object as a parent

e This is why “everything is an object” in Java!

e This leads to a hierarchy, which is what we've been visualizing.

Structure 5 Hierarchy

AbstractStructure

_—

| AbstractList |

(V) (Srabei) (oieis

Idea: these lines represent that one class extends another. But, we still haven't

Inheritance with Interfaces

First: a class must extend exactly one other class (Object if none is given)
But, a class may implement any number of Interfaces

¢ Makes some sense: an interface is just a contract. It's possible that a class fits
the requirements of many of these contracts.

An Interface may extend another Interface

e In fact, it can extend multiple interfaces...

Same idea as classes: the interface “gets” the methods from its parent
interface, and adds some more

If a class implements this interface, it must implement all of the listed
methods, plus all methods from its parent

Structure 5 Hierarchy

| AbstractStructure | Blue: Interface
Yellow: Abstract Class
Green: Class

[AbstractList |

() (St (S

Idea: these lines represent that one class extends another; or that one interface
extends another; or that a class implements an interface

Fitting Stacks Into Structure5

Putting the Classes Together

AbstractStructure Blue: Interface
Yellow: Abstract Class

Green: Cl
[AbstractList | reen: Class

() (St (o)

How can stacks and queues fit into structure5?

Putting the Classes Together

AbstractStructure Blue: Interface
Yellow: Abstract Class
Green: Class

[AbstractList |

() (St (o)

Where do stacks and queues go here? Are they a List? Are they a Structure?
Let’s look at both interfaces.

Stacks and Queues

e They are not a List: don’t have methods like get (int i) or index0f ()

e They probably could be a Structure: methods like size() and clear () make
sense, as do add () and remove ()

e This is a judgement call to some extent!

e In structure5, stacks and queues do implement Structure

Filling out structureb

e First: a Linear interface common to both stacks and queues, and an
AbstractLinear abstract class

e What qualities does a Linear structure have?
e Can add and remove items!

e Let’s look quickly at the code
e Then, the Stack and Queue interface extend the Linear interface
e Have an AbstractStack and AbstractQueue abstract class

e Finally, each stack class implements Stack and extends AbstractStack
(likewise for queues)

AbstractStack

e What methods are common to all stacks?

e Hint: abstract classes are very good for implementing methods that just call
other methods

e Hint 2: the Linear interface promised some methods that don’t quite line up
with the stack terminology...

e Idea: we can implement push() by calling add () and pop () by calling
remove (), and so on

e Same for AbstractQueue!

e Let's take a look at them

Current Structure5 Universe

AbstractStructure

AbstractList | AbstractlLinear |
AbstractStack] [AbstractQueue]

	Inheritance
	Fitting Stacks Into Structure5

