
Inheritance and Stack
Applications

Instructors: Sam McCauley and Dan Barowy

April 6, 2022



Admin

• Remember to fill out the partner form this morning (asap if haven’t done so

far).

• Any questions?



Inheritance



Inheritance

• We’ve been building towards inheritance throughout the course

• Seen it (and used it) a couple times

• Let’s talk about it a bit more formally

• You’ll use inheritance in Lab 9 (we’ll revisit it briefly right before then)



Creating a Subclass

• Use the extends keyword

• The subclass that you write inherits the fields (instance variables, static

variables, etc.) and methods of the parent class

• Cannot access the private members of the parent class.

• They’re still there, and can be accessed by parent class methods

• Can access protected members

• In short: subclasses allow us to add functionality to a class without rewriting it

• Can also refine classes for specific scenerios



Inheritance and Constructors Intro

• The subclass automatically calls the default constructor of the parent class

• Or, can use the super keyword on the first line of the constructor to call a

different parent class constructor

• We’ll come back to this before Lab 9



Example

• I want to keep track of 136 students in a course

• 136 students have name, ID, grade just like any other student

• They also have ten lab grades

• How can we make a StudentIn136 class?

• One option: just write it out

• Much easier: use inheritance! Let’s take a look



Class Types and Inheritance

• Every object of a class is also an object of the parent class

• So: a StudentIn136 is also a student

• We can, for example, sort Studentin136s using the code we wrote a few weeks

ago. Let’s see an example of that.



Example 2: MyVector

• You created a MyVector class: a Vector that can also sort

• Your MyVector class could access any public Vector methods. (Could also

access protected methods.)

• The data[] array is private. What happens if we try to access it directly?

• The underlying array is a good example of when we want a variable to be

private instead of protected: we really don’t want anyone accessing it, even

subclasses; any changes they want to make can be through the Vector

interface



Inheritance

• Inheritance is perhaps the main reason people use object oriented

programming

• So far: objects and class types help us create self-contained pieces of code

that can help us store data about a single concept or accomplish a single task

• With inheritance: we have an easy way to modify our code for a new task

• Saves us work!



Setting Up Java Class Hierarchy

• Every class has exactly one parent class

• Cannot inherit from two different classes in Java!

• If you do not state any parent class, then Object is the parent class

• So every class has a parent class, which has a parent class, which has a parent
class, . . . , which has Object as a parent

• This is why “everything is an object” in Java!

• This leads to a hierarchy, which is what we’ve been visualizing.



Structure 5 Hierarchy

Idea: these lines represent that one class extends another. But, we still haven’t

talked about Interfaces



Inheritance with Interfaces

• First: a class must extend exactly one other class (Object if none is given)

• But, a class may implement any number of Interfaces

• Makes some sense: an interface is just a contract. It’s possible that a class fits
the requirements of many of these contracts.

• An Interface may extend another Interface

• In fact, it can extend multiple interfaces. . .

• Same idea as classes: the interface “gets” the methods from its parent

interface, and adds some more

• If a class implements this interface, it must implement all of the listed

methods, plus all methods from its parent



Structure 5 Hierarchy

Blue: Interface

Yellow: Abstract Class

Green: Class

Idea: these lines represent that one class extends another; or that one interface

extends another; or that a class implements an interface



Fitting Stacks Into Structure5



Putting the Classes Together

Blue: Interface

Yellow: Abstract Class

Green: Class

How can stacks and queues fit into structure5?



Putting the Classes Together

Blue: Interface

Yellow: Abstract Class

Green: Class

Where do stacks and queues go here? Are they a List? Are they a Structure?

Let’s look at both interfaces.



Stacks and Queues

• They are not a List: don’t have methods like get(int i) or indexOf()

• They probably could be a Structure: methods like size() and clear() make
sense, as do add() and remove()

• This is a judgement call to some extent!

• In structure5, stacks and queues do implement Structure



Filling out structure5

• First: a Linear interface common to both stacks and queues, and an
AbstractLinear abstract class

• What qualities does a Linear structure have?

• Can add and remove items!

• Let’s look quickly at the code

• Then, the Stack and Queue interface extend the Linear interface

• Have an AbstractStack and AbstractQueue abstract class

• Finally, each stack class implements Stack and extends AbstractStack

(likewise for queues)



AbstractStack

• What methods are common to all stacks?

• Hint: abstract classes are very good for implementing methods that just call

other methods

• Hint 2: the Linear interface promised some methods that don’t quite line up

with the stack terminology...

• Idea: we can implement push() by calling add() and pop() by calling

remove(), and so on

• Same for AbstractQueue!

• Let’s take a look at them



Current Structure5 Universe


	Inheritance
	Fitting Stacks Into Structure5

