Induction

Instructors: Sam McCauley and Dan Barowy
March 4, 2022

Admin

- Any questions?

Motivating Recursion (Induction
 Intro)

Where to start?

```
public static int numX(String s) {
    if(s.length() == 0) {
        return 0;
    }
    if(s.charAt(s.lengt()-1) == 'X') {
        return 1 + numX(s.substring(0,s.length() - 1));
    else {
        return numX(s.substring(0,s.length() - 1));
    }
}
```

- If s has length θ, then this algorithm correctly returns θ.
- What if s has length 1 ?

Our strategy

- Start with base case
- Slowly argue that it works for larger and larger strings

Visualizing our Strategy

- How can we climb to the top of a ladder?
- Here's a two step process:
- Figure out how to get on some rung of the ladder
- Figure out a method to get from one rung to the next rung
- I always make it to the top of the ladder?

Our strategy

Ladder analogy: each step of the ladder is the length of the string in our recursive method. We want to show that our method is correct for a string of a certain length.

- Start with base case
- Slowly argue that it works for larger and larger strings

Induction

Induction

- Formalizes this idea
- Incredibly powerful and widely-used proof technique, especially in computer science and discrete math
- Two motivations:
- Prove that your approach works (and that mathematical equations hold)
- Analyze your code inductively: tracking down what happens when code behaves unexpectedly.

Induction: Classic Example

- Let's prove that for all $n \geq 1$:

$$
1+2+3+\ldots+n=\frac{n(n+1)}{2}
$$

- Also can be written:

$$
\sum_{i=1}^{n}=\frac{n(n+1)}{2}
$$

Induction

- Sometimes say that we are proving a collection of statements
- I could say "numX is correct".
- Or I could say "numX is correct for strings of length 1 , and strings of length 2 , and strings of length $3, \ldots$ "
- I could say that $1+2+\ldots+n=\frac{n(n+1)}{2}$.
- Or I could say that $1=1(2) / 2$, and $1+2=2(3) / 2$, and $1+2+3=3(4) / 2 \ldots$
- Climbing the ladder is like proving these statements one at a time. Taken together, I've proven the full statement.

Induction Recipe

Any inductive proof needs (let's say we're doing induction on n):

- A Base Case: need to show that the proof is correct for some value
- An Inductive Hypothesis: write the assumption you are making for a given n
- An Inductive Step: Prove that if you assume the inductive hypothesis for n, you can prove it for $n+1$.

You should always write all three steps explicitly when doing an induction in this class.

Induction Recipe (End of ladder analogy)

Any inductive proof needs (let's say we're doing induction on n):

- A Base Case: need to show that the proof is correct for some value get on ladder
- An Inductive Hypothesis: write the assumption you are making for a given $n \quad$ make it clear what the "rungs" of the ladder are
- An Inductive Step: Prove that if you assume the inductive hypothesis for n, you can prove it for $n+1$. get from one rung to the next

Induction: Classic Example

- Let's prove that for all $n \geq 1$:

$$
1+2+3+\ldots+n=\frac{n(n+1)}{2}
$$

- Base case?
- Base case $n=1$. If $n=1,1=1(2) / 2$; works!
- Inductive hypothesis: for some n, we have

$$
1+2+3+\ldots+n=\frac{n(n+1)}{2}
$$

Inductive Step

Goal: let's assume the inductive hypothesis for n. Can we use it to show the inductive hypothesis for $n+1$?

- Assume that

$$
1+2+3+\ldots+n=\frac{n(n+1)}{2}
$$

- Then

$$
\begin{aligned}
1+2+3+\ldots+n+(n+1)= & \frac{n(n+1)}{2}+(n+1) \\
& =\frac{n^{2}+n+2 n+2}{2} \\
& =\frac{(n+1)(n+2)}{2}
\end{aligned}
$$

- But this is the inductive hypothesis for $n+1$! So we are done.

What have we done?

- We have shown that for all n,

$$
1+2+3+\ldots+n=\frac{n(n+1)}{2}
$$

- Questions?

On the board

- For all n,

$$
1+2+4+\ldots+2^{n}=2^{n+1}-1
$$

- Can also be written

$$
\sum_{i=\theta}^{n} 2^{n}=2^{n+1}-1
$$

- Remember: base case, inductive hypothesis, inductive step

Proving statements about algorithms

(We'll be using this a lot on Monday, and with more interesting examples)

- How do we know contains() works on a Vector?
- Base case: contains() returns true if the element is in position θ in the vector; otherwise it moves past the Oth element without returning
- Inductive hypothesis: if the element is in the first i positions of the vector then contains() returns true; otherwise it moves past the first i elements without returning
- Inductive step: assume the inductive hypothesis for i. If the element is in position $\leq i$, then contains returns true by the inductive hypothesis. If the element is in position $i+1$, then contains does not return while looking at the first i elements by the inductive hypothesis. It examines the $i+1$ st element, and returns true if it is found; otherwise, contains moves to the next element.

Comparing performance of extending a Vector

- Let's say we insert n items into a Vector one at a time; each time we use add(). Let's assume that the Vector starts with size 1.
- First, let's say ensureCapacity adds 1 to the capacity of the Vector each time. How many operations does this take in total?
- Let's write the total operations.
- It takes $O(i)$ operations to call ensureCapacity on a vector of size i.
- Total operations:

$$
O(1)+O(2)+\ldots+O(n)
$$

- How do we add O ? We can just use the definition: we can upper bound $O(i)$ with ci.

Comparing performance of extending a Vector

- Let's say we insert n items into a Vector one at a time; each time we use add(). Let's assume that the Vector starts with size 1.
- First, let's say ensureCapacity adds 1 to the capacity of the Vector each time. How many operations does this take in total?
- Total operations:

$$
O(1)+O(2)+\ldots+O(n)
$$

- Total operations:

$$
\begin{gathered}
c_{1}+2 c_{1}+3 c_{1}+\ldots+c_{1} n=c_{1}(1+2+3+\ldots+n)= \\
c_{1} \frac{n(n+1)}{2}=c_{1} n^{2} / 2+c_{1} n / 2=O\left(n^{2}\right)
\end{gathered}
$$

Comparing performance of extending a Vector

- Let's say we insert n items into a Vector one at a time; each time we use add(). Let's assume that the Vector starts with size 1.
- First, let's say ensureCapacity adds 1 to the capacity of the Vector each time. How many operations does this take in total? Answer: $O\left(n^{2}\right)$
- Then, let's say ensureCapacity adds 10 to the capacity of the Vector each time. How many operations does this take in total?
- Finally, let's say ensureCapacity doubles the size of the Vector each time it is called. How many operations does this take in total?

Comparing performance of extending a Vector

- Let's say we insert n items into a Vector one at a time; each time we use add(). Let's assume that the Vector starts with size 1.
- Then, let's say ensureCapacity adds 10 to the capacity of the Vector each time. How many operations does this take in total?

$$
O(1 \theta)+O(2 \theta)+\ldots+O(n)
$$

- Rewrite as:

$$
c_{2} 1 \theta+c_{2} 2 \theta+\ldots+c_{2} n=1 \theta c_{2} \cdot 1+1 \theta c_{2} \cdot 2+\ldots+1 \theta c_{2} \cdot n / 1 \theta=
$$

- Rewrite as:

$$
=1 \theta c_{2} \frac{\frac{n}{1 \theta}\left(\frac{n}{1 \theta}+1\right)}{2}=O\left(n^{2}\right)
$$

Comparing performance of extending a Vector

- Let's say we insert n items into a Vector one at a time; each time we use add(). Let's assume that the Vector starts with size 1.
- First, let's say ensureCapacity adds 1 to the capacity of the Vector each time. How many operations does this take in total? Answer: $O\left(n^{2}\right)$
- Then, let's say ensureCapacity adds 10 to the capacity of the Vector each time. How many operations does this take in total? Answer: $O\left(n^{2}\right)$
- Finally, let's say ensureCapacity doubles the size of the Vector each time it is called. How many operations does this take in total?

Comparing performance of extending a Vector

- Let's say we insert n items into a Vector one at a time; each time we use add(). Let's assume that the Vector starts with size 1.
- Finally, let's say ensureCapacity doubles the size of the Vector each time it is called. How many operations does this take in total?
- Total operations:

$$
O(1)+O(2)+O(4)+\ldots+O(n)
$$

- Total operations:

$$
c_{1}+2 c_{1}+4 c_{1}+\ldots+c_{1} n=c_{1}(1+2+4+\ldots+n) \leq
$$

- Reminder: $1+2+4+\ldots+2^{i}=2^{i+1}-1$
- Substitute $i=\log _{2} n$:

$$
c_{1}\left(2^{i+1}-1\right)=2 c_{1} n-c_{1}=O(n)
$$

Comparing performance of extending a Vector

- Let's say we insert n items into a Vector one at a time; each time we use add (). Let's assume that the Vector starts with size 1.
- First, let's say ensureCapacity adds 1 to the capacity of the Vector each time. How many operations does this take in total? Answer: $O\left(n^{2}\right)$
- Then, let's say ensureCapacity adds 18 to the capacity of the Vector each time. How many operations does this take in total?
- Finally, let's say ensureCapacity doubles the size of the Vector each time it is called. How many operations does this take in total? Answer: $O(n)$

We save a factor n in number of operations by doubling vector size every time!

Printing a linked list

Let's look at two ways to print a singly linked list. First, we call get () on each index. Second, we iterate through the nodes of the list.

How long does each take?

Printing a linked list

```
public String toString() {
    String ret = "";
    for(int i = 0; i < count; i++) {
        ret += get(i).toString();
    }
}
```

public String toString() \{
Node<E> current = head;
String ret = "";
while(head != null) \{
ret += current.value().toString();
current = current.next();
\}
\}

Printing a linked list

- First method: calling get () takes $O(n)$ time.
- get () is called n times
- Total is $O\left(n^{2}\right)$ time.
- Second method: calling next() and toString() are $O(1)$ time
- Called n times. Total: $O(n)$ time.

Linked List Discussion

Tail pointer for singly linked list?

- Singly linked lists have very slow operations at the end of the list
- What if we maintain a tail pointer to the last element of the list? What can we maintain efficiently?
- How about addLast()?
- How about removeLast()?

Doubly vs Singly Linked List Tradeoffs

- What are some advantages of a doubly linked list?
- What are some advantages of a singly linked list?

