
Heaps and Priority Queues

Instructors: Sam McCauley and Dan Barowy

May 9, 2022



Admin

• Final review Friday (no quiz!)

• If you have an “exam hardship” let me know as soon as possible

• Lab 6 graded; back any minute now. Lab 7 waiting on a backend issue;
probably later today

• Labs 8 and 9, and last quiz, should be soon. . .

• Please bring your computers (or something) on Wednesday for course evals at

end of class

• Any questions?



Adjacency List vs Adjacency Matrix

• Adjacency List is (often) much faster for listing neighbors of a vertex:

• Adjacency Matrix gives time proportional to the total number of vertices,
Adjacency List gives time proportional to the degree.

• Adjacency Matrix is much faster for looking up if there is an edge bettween

two vertices

• Adjacency List (on a graph with n vertices and m edges) is much more space

efficient if m < n2



Shortest Path in Graph



Shortest path in a graph

• Breadth-first short finds the path with the smallest length in a graph

• Let’s look at a visualization of this



Shortest path: what do we really want?

• Not all edges are the same!

• It takes a different amount of time

to travel down different roads, or

take different flights

• What if we have numerical labels,

and the length of the path is the

sum of the labels?



Trying out BFS

• Does BFS work if we want to take path labels into account?

• Can we come up with an example where it doesn’t?



What do we want?

• Want to explore the paths in order of length

• So: something like BFS, but want to explore the shortest path next

• Called Dijkstra’s algorithm. We’ll discuss in detail on Wednesday

• Let’s look at how it runs

• For now: what do we need to implement this?



New operation on a data structure

• Need to know: what is the shortest remaining path to explore

• In BFS, we kept all vertices we wanted to explore in a queue

• Now, we don’t want first in first out. We want the vertex with smallest path

length out.

• We want to keep a collection of vertices in a data structure, with the ability to

remove the smallest

• This is called a priority queue



Priority Queues (Slide Deck
Change)



Benefits of heaps?

• Balanced binary search tree: time for removeMin? add?

• Both O(log n)

• Heap?

• Both O(log n)

• But much better constants, much simpler

• Creating a balanced binary tree of size n using an unsorted Vector?

• O(n log n)

• Creating a heap of size n using an unsorted Vector?

• O(n)



Heap vs priority queue

• Priority queue is the interface

• Heap is the specific implementation

• Like Map vs Hashtable. There are other ways to implement a Map; similarly,

there are other ways to implement a priority queue



Summary

• In short: heaps are much simpler and have much better constants

• Extremely common in practice!

• HeapSort is one of the most common sorting methods, especially if you want

O(n log n) guaranteed worst-case running time

• We saw min heaps. Can get a “max heap” by flipping the requirement: the root

element must be largest in the heap. Then can get good removeMax

performance


	Shortest Path in Graph
	Priority Queues (Slide Deck Change)

