
Hashing Continued

Instructors: Sam McCauley and Dan Barowy

April 29, 2022

Admin

• Talk today: gerrymandering and how it relates to computer science (2:30 in

Wege)

• Any questions?

Linear Probing

Linear Probing

• General idea: store each key-value pair in the first open slot on or after its

canonical slot

• Insertion: if a collision occurs at the bin, just scan forward (linearly) until an
empty slot is available; store the item there

• We “wrap around” at the end of the array

• Let’s call a contiguous region of full bins a run

• Lookup: to find a key-value pair, calculate the bin. Then, scan linearly until the

item is found or you reach the end of the run.

Tricky Part: Deletes

• Let’s look at NaiveProbing.java

• Simple (not very good) hash function: index of first letter of word

• Initial array size = 8

• Add “atlanta” to the hash table, then “detroit,” then “queens”

• q is the 16th letter of the alphabet (0-indexed)

• What happens if we remove “atlanta” and then look up “queens?”

• Our run was broken up!

• Now get() won’t work correctly

Tricky Part: Deletes

• Let’s look at NaiveProbing.java

• Simple (not very good) hash function: index of first letter of word

• Initial array size = 8

• Add “atlanta” to the hash table, then “detroit,” then “queens”

• q is the 16th letter of the alphabet (0-indexed)

• What happens if we remove “atlanta” and then look up “queens?”

• Our run was broken up!

• Now get() won’t work correctly

Tricky Part: Deletes

• Let’s look at NaiveProbing.java

• Simple (not very good) hash function: index of first letter of word

• Initial array size = 8

• Add “atlanta” to the hash table, then “detroit,” then “queens”

• q is the 16th letter of the alphabet (0-indexed)

• What happens if we remove “atlanta” and then look up “queens?”

• Our run was broken up!

• Now get() won’t work correctly

Tricky Part: Deletes

• Let’s look at NaiveProbing.java

• Simple (not very good) hash function: index of first letter of word

• Initial array size = 8

• Add “atlanta” to the hash table, then “detroit,” then “queens”

• q is the 16th letter of the alphabet (0-indexed)

• What happens if we remove “atlanta” and then look up “queens?”

• Our run was broken up!

• Now get() won’t work correctly

Tricky Part: Deletes

• Let’s look at NaiveProbing.java

• Simple (not very good) hash function: index of first letter of word

• Initial array size = 8

• Add “atlanta” to the hash table, then “detroit,” then “queens”

• q is the 16th letter of the alphabet (0-indexed)

• What happens if we remove “atlanta” and then look up “queens?”

• Our run was broken up!

• Now get() won’t work correctly

Tricky Part: Deletes

• Let’s look at NaiveProbing.java

• Simple (not very good) hash function: index of first letter of word

• Initial array size = 8

• Add “atlanta” to the hash table, then “detroit,” then “queens”

• q is the 16th letter of the alphabet (0-indexed)

• What happens if we remove “atlanta” and then look up “queens?”

• Our run was broken up!

• Now get() won’t work correctly

Tricky Part: Deletes

• Let’s look at NaiveProbing.java

• Simple (not very good) hash function: index of first letter of word

• Initial array size = 8

• Add “atlanta” to the hash table, then “detroit,” then “queens”

• q is the 16th letter of the alphabet (0-indexed)

• What happens if we remove “atlanta” and then look up “queens?”

• Our run was broken up!

• Now get() won’t work correctly

Linear Probing Deletes

• When we delete an element from a run, we create a “hole”

• Challenge: how do we tell if the run has ended, or if the hole was created with a
deletion?

• Solution: insert a placeholder

• If we see the placeholder during a lookup, we treat it as a collision, and keep
scanning until we find a true hole

• If we see the placeholder during an insertion, we treat it as an open slot

• Must still scan the whole run to make sure the key isn’t present later on

Linear Probing Deletes

• When we delete an element from a run, we create a “hole”

• Challenge: how do we tell if the run has ended, or if the hole was created with a
deletion?

• Solution: insert a placeholder

• If we see the placeholder during a lookup, we treat it as a collision, and keep
scanning until we find a true hole

• If we see the placeholder during an insertion, we treat it as an open slot

• Must still scan the whole run to make sure the key isn’t present later on

Linear Probing Deletes

• When we delete an element from a run, we create a “hole”

• Challenge: how do we tell if the run has ended, or if the hole was created with a
deletion?

• Solution: insert a placeholder

• If we see the placeholder during a lookup, we treat it as a collision, and keep
scanning until we find a true hole

• If we see the placeholder during an insertion, we treat it as an open slot

• Must still scan the whole run to make sure the key isn’t present later on

Linear Probing Deletes

• When we delete an element from a run, we create a “hole”

• Challenge: how do we tell if the run has ended, or if the hole was created with a
deletion?

• Solution: insert a placeholder

• If we see the placeholder during a lookup, we treat it as a collision, and keep
scanning until we find a true hole

• If we see the placeholder during an insertion, we treat it as an open slot

• Must still scan the whole run to make sure the key isn’t present later on

Linear Probing Deletes

• When we delete an element from a run, we create a “hole”

• Challenge: how do we tell if the run has ended, or if the hole was created with a
deletion?

• Solution: insert a placeholder

• If we see the placeholder during a lookup, we treat it as a collision, and keep
scanning until we find a true hole

• If we see the placeholder during an insertion, we treat it as an open slot

• Must still scan the whole run to make sure the key isn’t present later on

Linear Probing Deletes

• When we delete an element from a run, we create a “hole”

• Challenge: how do we tell if the run has ended, or if the hole was created with a
deletion?

• Solution: insert a placeholder

• If we see the placeholder during a lookup, we treat it as a collision, and keep
scanning until we find a true hole

• If we see the placeholder during an insertion, we treat it as an open slot

• Must still scan the whole run to make sure the key isn’t present later on

Implementation

• Let’s look at HashAssociation.java

• Finally, Hashtable.java

Implementation

• Let’s look at HashAssociation.java

• Finally, Hashtable.java

Linear Probing Observations

• Code is more complicated than in external chaining, but still manageable

• The length of a run dictates the performance

• Removing elements does not shrink the run–it defers the work to other
operations

• Keeping runs small is important, so we may want to reconsider some design
decisions if we expect a lot of deletions

Linear Probing Observations

• Code is more complicated than in external chaining, but still manageable

• The length of a run dictates the performance

• Removing elements does not shrink the run–it defers the work to other
operations

• Keeping runs small is important, so we may want to reconsider some design
decisions if we expect a lot of deletions

Linear Probing Observations

• Code is more complicated than in external chaining, but still manageable

• The length of a run dictates the performance

• Removing elements does not shrink the run–it defers the work to other
operations

• Keeping runs small is important, so we may want to reconsider some design
decisions if we expect a lot of deletions

Linear Probing Observations

• Code is more complicated than in external chaining, but still manageable

• The length of a run dictates the performance

• Removing elements does not shrink the run–it defers the work to other
operations

• Keeping runs small is important, so we may want to reconsider some design
decisions if we expect a lot of deletions

Linear Probing Observations

• Downsides of linear probing?

• What if the array is almost full?

• Very long runs

• Does external chaining avoid this problem?

• Short answer: yes

• Only scan through collisions, not the entire run

• Never scans more items than linear probing!

• But: worse cache behavior (locality)

Linear Probing Observations

• Downsides of linear probing?

• What if the array is almost full?

• Very long runs

• Does external chaining avoid this problem?

• Short answer: yes

• Only scan through collisions, not the entire run

• Never scans more items than linear probing!

• But: worse cache behavior (locality)

Linear Probing Observations

• Downsides of linear probing?

• What if the array is almost full?

• Very long runs

• Does external chaining avoid this problem?

• Short answer: yes

• Only scan through collisions, not the entire run

• Never scans more items than linear probing!

• But: worse cache behavior (locality)

Linear Probing Observations

• Downsides of linear probing?

• What if the array is almost full?

• Very long runs

• Does external chaining avoid this problem?

• Short answer: yes

• Only scan through collisions, not the entire run

• Never scans more items than linear probing!

• But: worse cache behavior (locality)

Linear Probing Observations

• Downsides of linear probing?

• What if the array is almost full?

• Very long runs

• Does external chaining avoid this problem?

• Short answer: yes

• Only scan through collisions, not the entire run

• Never scans more items than linear probing!

• But: worse cache behavior (locality)

Linear Probing Observations

• Downsides of linear probing?

• What if the array is almost full?

• Very long runs

• Does external chaining avoid this problem?

• Short answer: yes

• Only scan through collisions, not the entire run

• Never scans more items than linear probing!

• But: worse cache behavior (locality)

Linear Probing Observations

• Downsides of linear probing?

• What if the array is almost full?

• Very long runs

• Does external chaining avoid this problem?

• Short answer: yes

• Only scan through collisions, not the entire run

• Never scans more items than linear probing!

• But: worse cache behavior (locality)

Linear Probing Observations

• Downsides of linear probing?

• What if the array is almost full?

• Very long runs

• Does external chaining avoid this problem?

• Short answer: yes

• Only scan through collisions, not the entire run

• Never scans more items than linear probing!

• But: worse cache behavior (locality)

Performance: Linear Probing vs Chaining

• What is the performance of put(K,V)?

• Linear probing: O(1+ run length)

• External Chaining: O(1+ chain length)

• Same for get(K), remove(K)

• So: how do we control the length of a run/length of a chain?

• Related: how do we actually choose a hash function?

Performance: Linear Probing vs Chaining

• What is the performance of put(K,V)?

• Linear probing: O(1+ run length)

• External Chaining: O(1+ chain length)

• Same for get(K), remove(K)

• So: how do we control the length of a run/length of a chain?

• Related: how do we actually choose a hash function?

Performance: Linear Probing vs Chaining

• What is the performance of put(K,V)?

• Linear probing: O(1+ run length)

• External Chaining: O(1+ chain length)

• Same for get(K), remove(K)

• So: how do we control the length of a run/length of a chain?

• Related: how do we actually choose a hash function?

Performance: Linear Probing vs Chaining

• What is the performance of put(K,V)?

• Linear probing: O(1+ run length)

• External Chaining: O(1+ chain length)

• Same for get(K), remove(K)

• So: how do we control the length of a run/length of a chain?

• Related: how do we actually choose a hash function?

Performance: Linear Probing vs Chaining

• What is the performance of put(K,V)?

• Linear probing: O(1+ run length)

• External Chaining: O(1+ chain length)

• Same for get(K), remove(K)

• So: how do we control the length of a run/length of a chain?

• Related: how do we actually choose a hash function?

Performance: Linear Probing vs Chaining

• What is the performance of put(K,V)?

• Linear probing: O(1+ run length)

• External Chaining: O(1+ chain length)

• Same for get(K), remove(K)

• So: how do we control the length of a run/length of a chain?

• Related: how do we actually choose a hash function?

Hashtable Size

Maintaining Hashtable Size

• Like vectors: we need to grow when we run out of space

• What do we mean by running out of space?

• We need to make a trade-off between space and performance:

• We want our table size to be large to minimize collisions (and run/chain lengths):
leads to good performance, bad space

• We want our table size to be small to minimize wasted space (empty slots): leads
to good space, bad performance

• Some flexibility (like with Vectors): we don’t know the size up front

Maintaining Hashtable Size

• Like vectors: we need to grow when we run out of space

• What do we mean by running out of space?

• We need to make a trade-off between space and performance:

• We want our table size to be large to minimize collisions (and run/chain lengths):
leads to good performance, bad space

• We want our table size to be small to minimize wasted space (empty slots): leads
to good space, bad performance

• Some flexibility (like with Vectors): we don’t know the size up front

Maintaining Hashtable Size

• Like vectors: we need to grow when we run out of space

• What do we mean by running out of space?

• We need to make a trade-off between space and performance:

• We want our table size to be large to minimize collisions (and run/chain lengths):
leads to good performance, bad space

• We want our table size to be small to minimize wasted space (empty slots): leads
to good space, bad performance

• Some flexibility (like with Vectors): we don’t know the size up front

Maintaining Hashtable Size

• Like vectors: we need to grow when we run out of space

• What do we mean by running out of space?

• We need to make a trade-off between space and performance:

• We want our table size to be large to minimize collisions (and run/chain lengths):
leads to good performance, bad space

• We want our table size to be small to minimize wasted space (empty slots): leads
to good space, bad performance

• Some flexibility (like with Vectors): we don’t know the size up front

Maintaining Hashtable Size

• Like vectors: we need to grow when we run out of space

• What do we mean by running out of space?

• We need to make a trade-off between space and performance:

• We want our table size to be large to minimize collisions (and run/chain lengths):
leads to good performance, bad space

• We want our table size to be small to minimize wasted space (empty slots): leads
to good space, bad performance

• Some flexibility (like with Vectors): we don’t know the size up front

Maintaining Hashtable Size

• Like vectors: we need to grow when we run out of space

• What do we mean by running out of space?

• We need to make a trade-off between space and performance:

• We want our table size to be large to minimize collisions (and run/chain lengths):
leads to good performance, bad space

• We want our table size to be small to minimize wasted space (empty slots): leads
to good space, bad performance

• Some flexibility (like with Vectors): we don’t know the size up front

Load Factor

• Suppose a hash table with m slots stores n elements

• Load factor is a measure of how full the hash table is

load factor =
elements
slots

=
n
m

• A smaller load factor means the hashtable is less full, which likely gives better

performance

Load Factor

• Suppose a hash table with m slots stores n elements

• Load factor is a measure of how full the hash table is

load factor =
elements
slots

=
n
m

• A smaller load factor means the hashtable is less full, which likely gives better

performance

Load Factor

• Suppose a hash table with m slots stores n elements

• Load factor is a measure of how full the hash table is

load factor =
elements
slots

=
n
m

• A smaller load factor means the hashtable is less full, which likely gives better

performance

Using the Load Factor

• We can keep a running count of the table’s elements so that we always know

the load factor

• Given a hashtable’s load factor, what should we do?

• If the load factor is high (say > .5), we grow our table

• How to grow?

• Vectors: ensureCapacity() allocates a new Object array, then copies

elements over

• Does this work for hashtables?

Using the Load Factor

• We can keep a running count of the table’s elements so that we always know

the load factor

• Given a hashtable’s load factor, what should we do?

• If the load factor is high (say > .5), we grow our table

• How to grow?

• Vectors: ensureCapacity() allocates a new Object array, then copies

elements over

• Does this work for hashtables?

Using the Load Factor

• We can keep a running count of the table’s elements so that we always know

the load factor

• Given a hashtable’s load factor, what should we do?

• If the load factor is high (say > .5), we grow our table

• How to grow?

• Vectors: ensureCapacity() allocates a new Object array, then copies

elements over

• Does this work for hashtables?

Using the Load Factor

• We can keep a running count of the table’s elements so that we always know

the load factor

• Given a hashtable’s load factor, what should we do?

• If the load factor is high (say > .5), we grow our table

• How to grow?

• Vectors: ensureCapacity() allocates a new Object array, then copies

elements over

• Does this work for hashtables?

Using the Load Factor

• We can keep a running count of the table’s elements so that we always know

the load factor

• Given a hashtable’s load factor, what should we do?

• If the load factor is high (say > .5), we grow our table

• How to grow?

• Vectors: ensureCapacity() allocates a new Object array, then copies

elements over

• Does this work for hashtables?

Using the Load Factor

• We can keep a running count of the table’s elements so that we always know

the load factor

• Given a hashtable’s load factor, what should we do?

• If the load factor is high (say > .5), we grow our table

• How to grow?

• Vectors: ensureCapacity() allocates a new Object array, then copies

elements over

• Does this work for hashtables?

Making Hashtables Larger

• Cannot just copy values! (why?)

• The canonical slot might change

• Example: suppose key.hashCode() == 11

• Then 11 % 8 == 3 but 11 % 16 == 11

• How can we handle this?

• To grow our hashtable, we must recompute the canonical slot for each item,

then reinsert the item into the new array

Making Hashtables Larger

• Cannot just copy values! (why?)

• The canonical slot might change

• Example: suppose key.hashCode() == 11

• Then 11 % 8 == 3 but 11 % 16 == 11

• How can we handle this?

• To grow our hashtable, we must recompute the canonical slot for each item,

then reinsert the item into the new array

Making Hashtables Larger

• Cannot just copy values! (why?)

• The canonical slot might change

• Example: suppose key.hashCode() == 11

• Then 11 % 8 == 3 but 11 % 16 == 11

• How can we handle this?

• To grow our hashtable, we must recompute the canonical slot for each item,

then reinsert the item into the new array

Making Hashtables Larger

• Cannot just copy values! (why?)

• The canonical slot might change

• Example: suppose key.hashCode() == 11

• Then 11 % 8 == 3 but 11 % 16 == 11

• How can we handle this?

• To grow our hashtable, we must recompute the canonical slot for each item,

then reinsert the item into the new array

Making Hashtables Larger

• Cannot just copy values! (why?)

• The canonical slot might change

• Example: suppose key.hashCode() == 11

• Then 11 % 8 == 3 but 11 % 16 == 11

• How can we handle this?

• To grow our hashtable, we must recompute the canonical slot for each item,

then reinsert the item into the new array

Making Hashtables Larger

• Cannot just copy values! (why?)

• The canonical slot might change

• Example: suppose key.hashCode() == 11

• Then 11 % 8 == 3 but 11 % 16 == 11

• How can we handle this?

• To grow our hashtable, we must recompute the canonical slot for each item,

then reinsert the item into the new array

When to grow?

• Choose some load factor

• .50 and .66 are very popular; depends a bit on the use case

• Tradeoff between size and performance

• structure5 Hashtable uses .6

When to grow?

• Choose some load factor

• .50 and .66 are very popular; depends a bit on the use case

• Tradeoff between size and performance

• structure5 Hashtable uses .6

When to grow?

• Choose some load factor

• .50 and .66 are very popular; depends a bit on the use case

• Tradeoff between size and performance

• structure5 Hashtable uses .6

When to grow?

• Choose some load factor

• .50 and .66 are very popular; depends a bit on the use case

• Tradeoff between size and performance

• structure5 Hashtable uses .6

Array Sizes

• Some people like using hash tables whose size is a prime

• Reason: remember that we use % array.length to calculate the canonical

slot

• A prime size can help “spread out” the items

• Downside: need to find a prime size when doubling

• We won’t worry about this in this class; just a heads up. You’ll often see a hash

table of size 997 or something—this is why.

Array Sizes

• Some people like using hash tables whose size is a prime

• Reason: remember that we use % array.length to calculate the canonical

slot

• A prime size can help “spread out” the items

• Downside: need to find a prime size when doubling

• We won’t worry about this in this class; just a heads up. You’ll often see a hash

table of size 997 or something—this is why.

Array Sizes

• Some people like using hash tables whose size is a prime

• Reason: remember that we use % array.length to calculate the canonical

slot

• A prime size can help “spread out” the items

• Downside: need to find a prime size when doubling

• We won’t worry about this in this class; just a heads up. You’ll often see a hash

table of size 997 or something—this is why.

Array Sizes

• Some people like using hash tables whose size is a prime

• Reason: remember that we use % array.length to calculate the canonical

slot

• A prime size can help “spread out” the items

• Downside: need to find a prime size when doubling

• We won’t worry about this in this class; just a heads up. You’ll often see a hash

table of size 997 or something—this is why.

Array Sizes

• Some people like using hash tables whose size is a prime

• Reason: remember that we use % array.length to calculate the canonical

slot

• A prime size can help “spread out” the items

• Downside: need to find a prime size when doubling

• We won’t worry about this in this class; just a heads up. You’ll often see a hash

table of size 997 or something—this is why.

Choosing Hash Functions

Good Hash Functions

• Good hash functions:

• Are fast to compute

• Uniformly distribute keys across the range

• Rules of thumb to make good hash functions?

• Not really. We almost always have to test “goodness” empirically

Good Hash Functions

• Good hash functions:

• Are fast to compute

• Uniformly distribute keys across the range

• Rules of thumb to make good hash functions?

• Not really. We almost always have to test “goodness” empirically

Good Hash Functions

• Good hash functions:

• Are fast to compute

• Uniformly distribute keys across the range

• Rules of thumb to make good hash functions?

• Not really. We almost always have to test “goodness” empirically

Good Hash Functions

• Good hash functions:

• Are fast to compute

• Uniformly distribute keys across the range

• Rules of thumb to make good hash functions?

• Not really. We almost always have to test “goodness” empirically

Good Hash Functions

• Good hash functions:

• Are fast to compute

• Uniformly distribute keys across the range

• Rules of thumb to make good hash functions?

• Not really. We almost always have to test “goodness” empirically

Hashing Strings

• What are some reasonable hash functions for Strings

• One idea: use the first character’s Unicode value? (Every character is stores as
a number in Java). Problems with this?

• Can only return 0–255

• Not uniform (some letters far more common)

• Sum of the Unicode values of all characters?

• Still not uniform! (We’ll see in a second)

• Doesn’t work well for large hashtables

• Not good at avoiding collisions: smile, limes, miles, and slime are all the same

Hashing Strings

• What are some reasonable hash functions for Strings

• One idea: use the first character’s Unicode value? (Every character is stores as
a number in Java). Problems with this?

• Can only return 0–255

• Not uniform (some letters far more common)

• Sum of the Unicode values of all characters?

• Still not uniform! (We’ll see in a second)

• Doesn’t work well for large hashtables

• Not good at avoiding collisions: smile, limes, miles, and slime are all the same

Hashing Strings

• What are some reasonable hash functions for Strings

• One idea: use the first character’s Unicode value? (Every character is stores as
a number in Java). Problems with this?

• Can only return 0–255

• Not uniform (some letters far more common)

• Sum of the Unicode values of all characters?

• Still not uniform! (We’ll see in a second)

• Doesn’t work well for large hashtables

• Not good at avoiding collisions: smile, limes, miles, and slime are all the same

Hashing Strings

• What are some reasonable hash functions for Strings

• One idea: use the first character’s Unicode value? (Every character is stores as
a number in Java). Problems with this?

• Can only return 0–255

• Not uniform (some letters far more common)

• Sum of the Unicode values of all characters?

• Still not uniform! (We’ll see in a second)

• Doesn’t work well for large hashtables

• Not good at avoiding collisions: smile, limes, miles, and slime are all the same

Hashing Strings

• What are some reasonable hash functions for Strings

• One idea: use the first character’s Unicode value? (Every character is stores as
a number in Java). Problems with this?

• Can only return 0–255

• Not uniform (some letters far more common)

• Sum of the Unicode values of all characters?

• Still not uniform! (We’ll see in a second)

• Doesn’t work well for large hashtables

• Not good at avoiding collisions: smile, limes, miles, and slime are all the same

Hashing Strings

• What are some reasonable hash functions for Strings

• One idea: use the first character’s Unicode value? (Every character is stores as
a number in Java). Problems with this?

• Can only return 0–255

• Not uniform (some letters far more common)

• Sum of the Unicode values of all characters?

• Still not uniform! (We’ll see in a second)

• Doesn’t work well for large hashtables

• Not good at avoiding collisions: smile, limes, miles, and slime are all the same

Hashing Strings

• What are some reasonable hash functions for Strings

• One idea: use the first character’s Unicode value? (Every character is stores as
a number in Java). Problems with this?

• Can only return 0–255

• Not uniform (some letters far more common)

• Sum of the Unicode values of all characters?

• Still not uniform! (We’ll see in a second)

• Doesn’t work well for large hashtables

• Not good at avoiding collisions: smile, limes, miles, and slime are all the same

Hashing Strings

• What are some reasonable hash functions for Strings

• One idea: use the first character’s Unicode value? (Every character is stores as
a number in Java). Problems with this?

• Can only return 0–255

• Not uniform (some letters far more common)

• Sum of the Unicode values of all characters?

• Still not uniform! (We’ll see in a second)

• Doesn’t work well for large hashtables

• Not good at avoiding collisions: smile, limes, miles, and slime are all the same

Sum of Unicode Values

• This is the hash of all words in the UNIX spellchecking dictionary
• x-axis is bucket; y-axis is number of words that hash to the bucket

• Uses 997 buckets

• Hash of a string s:
∑s.length

i=0 s.charAt(i)

Sum of Unicode Values

• This is the hash of all words in the UNIX spellchecking dictionary
• x-axis is bucket; y-axis is number of words that hash to the bucket

• Uses 997 buckets

• Hash of a string s:
∑s.length

i=0 s.charAt(i)

Sum of Unicode Values

• This is the hash of all words in the UNIX spellchecking dictionary
• x-axis is bucket; y-axis is number of words that hash to the bucket

• Uses 997 buckets

• Hash of a string s:
∑s.length

i=0 s.charAt(i)

Sum of Unicode Values

• Hash of a string s:
∑s.length

i=0 2i· s.charAt(i)

• Better! But still not great.

Sum of Unicode Values

• Hash of a string s:
∑s.length

i=0 2i· s.charAt(i)

• Better! But still not great.

Sum of Unicode Values

• Hash of a string s:
∑s.length

i=0 256i· s.charAt(i)

• Really good! But do we need numbers as big as 256i?

Sum of Unicode Values

• Hash of a string s:
∑s.length

i=0 256i· s.charAt(i)

• Really good! But do we need numbers as big as 256i?

Sum of Unicode Values

• Hash of a string s:
∑s.length

i=0 31i· s.charAt(i)

• This is (essentially) what Java uses to hash strings!

Sum of Unicode Values

• Hash of a string s:
∑s.length

i=0 31i· s.charAt(i)

• This is (essentially) what Java uses to hash strings!

Other Objects?

• Integers?

• In Java: i.hashCode() is i

• Could be terrible depending on your data

• Might want to use another hashCode() method in that case

• One popular one (has theoretical performance guarantees!):

h(x) = (ax + b) % p

• What about other classes?

• Write your own (probably similar) hashCode() methods. Test empirically to

make sure elements are spread out

Other Objects?

• Integers?

• In Java: i.hashCode() is i

• Could be terrible depending on your data

• Might want to use another hashCode() method in that case

• One popular one (has theoretical performance guarantees!):

h(x) = (ax + b) % p

• What about other classes?

• Write your own (probably similar) hashCode() methods. Test empirically to

make sure elements are spread out

Other Objects?

• Integers?

• In Java: i.hashCode() is i

• Could be terrible depending on your data

• Might want to use another hashCode() method in that case

• One popular one (has theoretical performance guarantees!):

h(x) = (ax + b) % p

• What about other classes?

• Write your own (probably similar) hashCode() methods. Test empirically to

make sure elements are spread out

Other Objects?

• Integers?

• In Java: i.hashCode() is i

• Could be terrible depending on your data

• Might want to use another hashCode() method in that case

• One popular one (has theoretical performance guarantees!):

h(x) = (ax + b) % p

• What about other classes?

• Write your own (probably similar) hashCode() methods. Test empirically to

make sure elements are spread out

Other Objects?

• Integers?

• In Java: i.hashCode() is i

• Could be terrible depending on your data

• Might want to use another hashCode() method in that case

• One popular one (has theoretical performance guarantees!):

h(x) = (ax + b) % p

• What about other classes?

• Write your own (probably similar) hashCode() methods. Test empirically to

make sure elements are spread out

Other Objects?

• Integers?

• In Java: i.hashCode() is i

• Could be terrible depending on your data

• Might want to use another hashCode() method in that case

• One popular one (has theoretical performance guarantees!):

h(x) = (ax + b) % p

• What about other classes?

• Write your own (probably similar) hashCode() methods. Test empirically to

make sure elements are spread out

Other Objects?

• Integers?

• In Java: i.hashCode() is i

• Could be terrible depending on your data

• Might want to use another hashCode() method in that case

• One popular one (has theoretical performance guarantees!):

h(x) = (ax + b) % p

• What about other classes?

• Write your own (probably similar) hashCode() methods. Test empirically to

make sure elements are spread out

Hashtable Performance

Hashtable Performance

• Given the hash code of an object o, how long does get(o) take?

• O(run length) for linear probing; O(chain length) for external chaining

• Assumes that .equals() is O(1) time

• How long does calculating a hash code take?

• Can be long for, say, a long string.

• O(1) in terms of the number of items in the hash table

• Another example of being careful about how we’re stating our running time.
Usually: in terms of number of strings in the table. But do we care about the
length of our strings?

Hashtable Performance

• Given the hash code of an object o, how long does get(o) take?

• O(run length) for linear probing; O(chain length) for external chaining

• Assumes that .equals() is O(1) time

• How long does calculating a hash code take?

• Can be long for, say, a long string.

• O(1) in terms of the number of items in the hash table

• Another example of being careful about how we’re stating our running time.
Usually: in terms of number of strings in the table. But do we care about the
length of our strings?

Hashtable Performance

• Given the hash code of an object o, how long does get(o) take?

• O(run length) for linear probing; O(chain length) for external chaining

• Assumes that .equals() is O(1) time

• How long does calculating a hash code take?

• Can be long for, say, a long string.

• O(1) in terms of the number of items in the hash table

• Another example of being careful about how we’re stating our running time.
Usually: in terms of number of strings in the table. But do we care about the
length of our strings?

Hashtable Performance

• Given the hash code of an object o, how long does get(o) take?

• O(run length) for linear probing; O(chain length) for external chaining

• Assumes that .equals() is O(1) time

• How long does calculating a hash code take?

• Can be long for, say, a long string.

• O(1) in terms of the number of items in the hash table

• Another example of being careful about how we’re stating our running time.
Usually: in terms of number of strings in the table. But do we care about the
length of our strings?

Hashtable Performance

• Given the hash code of an object o, how long does get(o) take?

• O(run length) for linear probing; O(chain length) for external chaining

• Assumes that .equals() is O(1) time

• How long does calculating a hash code take?

• Can be long for, say, a long string.

• O(1) in terms of the number of items in the hash table

• Another example of being careful about how we’re stating our running time.
Usually: in terms of number of strings in the table. But do we care about the
length of our strings?

Hashtable Performance

• Given the hash code of an object o, how long does get(o) take?

• O(run length) for linear probing; O(chain length) for external chaining

• Assumes that .equals() is O(1) time

• How long does calculating a hash code take?

• Can be long for, say, a long string.

• O(1) in terms of the number of items in the hash table

• Another example of being careful about how we’re stating our running time.
Usually: in terms of number of strings in the table. But do we care about the
length of our strings?

Hashtable Performance

• Given the hash code of an object o, how long does get(o) take?

• O(run length) for linear probing; O(chain length) for external chaining

• Assumes that .equals() is O(1) time

• How long does calculating a hash code take?

• Can be long for, say, a long string.

• O(1) in terms of the number of items in the hash table

• Another example of being careful about how we’re stating our running time.
Usually: in terms of number of strings in the table. But do we care about the
length of our strings?

Impact on Performance

• Let’s say we have constant load factor

• Assume we have a good hash function

• Spreads objects out “like random”

• Then an average bucket has constant chain length

• An average bucket is in a run of constant length

• (With overwhelming probability, never gets worse than O(log n) for any bucket)

• Usually we say we have O(1) performance. True on average; the actual worst

case might be a bit worse

Impact on Performance

• Let’s say we have constant load factor

• Assume we have a good hash function

• Spreads objects out “like random”

• Then an average bucket has constant chain length

• An average bucket is in a run of constant length

• (With overwhelming probability, never gets worse than O(log n) for any bucket)

• Usually we say we have O(1) performance. True on average; the actual worst

case might be a bit worse

Impact on Performance

• Let’s say we have constant load factor

• Assume we have a good hash function

• Spreads objects out “like random”

• Then an average bucket has constant chain length

• An average bucket is in a run of constant length

• (With overwhelming probability, never gets worse than O(log n) for any bucket)

• Usually we say we have O(1) performance. True on average; the actual worst

case might be a bit worse

Impact on Performance

• Let’s say we have constant load factor

• Assume we have a good hash function

• Spreads objects out “like random”

• Then an average bucket has constant chain length

• An average bucket is in a run of constant length

• (With overwhelming probability, never gets worse than O(log n) for any bucket)

• Usually we say we have O(1) performance. True on average; the actual worst

case might be a bit worse

Impact on Performance

• Let’s say we have constant load factor

• Assume we have a good hash function

• Spreads objects out “like random”

• Then an average bucket has constant chain length

• An average bucket is in a run of constant length

• (With overwhelming probability, never gets worse than O(log n) for any bucket)

• Usually we say we have O(1) performance. True on average; the actual worst

case might be a bit worse

Impact on Performance

• Let’s say we have constant load factor

• Assume we have a good hash function

• Spreads objects out “like random”

• Then an average bucket has constant chain length

• An average bucket is in a run of constant length

• (With overwhelming probability, never gets worse than O(log n) for any bucket)

• Usually we say we have O(1) performance. True on average; the actual worst

case might be a bit worse

Impact on Performance

• Let’s say we have constant load factor

• Assume we have a good hash function

• Spreads objects out “like random”

• Then an average bucket has constant chain length

• An average bucket is in a run of constant length

• (With overwhelming probability, never gets worse than O(log n) for any bucket)

• Usually we say we have O(1) performance. True on average; the actual worst

case might be a bit worse

Summary of Map Performance

put get space

Unsorted Vector O(n) O(n) O(n)

Unsorted List O(n) O(n) O(n)

Sorted Vector O(n) O(log n) O(n)

Balanced BST O(log n) O(log n) O(n)

Hashtable (average) O(1) O(1) O(n)

	Linear Probing
	Hashtable Size
	Choosing Hash Functions
	Hashtable Performance

