
Introduction to Graphs

Instructors: Sam McCauley and Dan Barowy

May 2, 2022



Admin

• Last week’s quiz back Wednesday

• Any questions?



Graphs



Purpose of Graphs

• Data structures up until this point have mostly been designed to store data for

easy access

• Much of them were essentially implementations of a Map (or Dictionary)

• Trees were, in some cases, able to store relationships between pieces of data

• Family tree: parent/child relationships

• Lexicon trie: relationship between nodes in the trie represented stored words

• Graphs: a new data structure to store relationships between data. (Graphs are

not particularly useful for Dictionary-like operations.)



Purpose of Graphs

• Data structures up until this point have mostly been designed to store data for

easy access

• Much of them were essentially implementations of a Map (or Dictionary)

• Trees were, in some cases, able to store relationships between pieces of data

• Family tree: parent/child relationships

• Lexicon trie: relationship between nodes in the trie represented stored words

• Graphs: a new data structure to store relationships between data. (Graphs are

not particularly useful for Dictionary-like operations.)



Purpose of Graphs

• Data structures up until this point have mostly been designed to store data for

easy access

• Much of them were essentially implementations of a Map (or Dictionary)

• Trees were, in some cases, able to store relationships between pieces of data

• Family tree: parent/child relationships

• Lexicon trie: relationship between nodes in the trie represented stored words

• Graphs: a new data structure to store relationships between data. (Graphs are

not particularly useful for Dictionary-like operations.)



Purpose of Graphs

• Data structures up until this point have mostly been designed to store data for

easy access

• Much of them were essentially implementations of a Map (or Dictionary)

• Trees were, in some cases, able to store relationships between pieces of data

• Family tree: parent/child relationships

• Lexicon trie: relationship between nodes in the trie represented stored words

• Graphs: a new data structure to store relationships between data. (Graphs are

not particularly useful for Dictionary-like operations.)



Purpose of Graphs

• Data structures up until this point have mostly been designed to store data for

easy access

• Much of them were essentially implementations of a Map (or Dictionary)

• Trees were, in some cases, able to store relationships between pieces of data

• Family tree: parent/child relationships

• Lexicon trie: relationship between nodes in the trie represented stored words

• Graphs: a new data structure to store relationships between data. (Graphs are

not particularly useful for Dictionary-like operations.)



Purpose of Graphs

• Data structures up until this point have mostly been designed to store data for

easy access

• Much of them were essentially implementations of a Map (or Dictionary)

• Trees were, in some cases, able to store relationships between pieces of data

• Family tree: parent/child relationships

• Lexicon trie: relationship between nodes in the trie represented stored words

• Graphs: a new data structure to store relationships between data. (Graphs are

not particularly useful for Dictionary-like operations.)



Graphs

• Graphs consist of nodes and edges

• Much like a tree! But no restrictions on how edges may connect nodes

• An edge may be directed or undirected

• Directed edges represent a relationship from (say) node A to node B. Undirected
represent a relationship between node A and node B (no direction on the
relationship)



Graphs

• Graphs consist of nodes and edges

• Much like a tree! But no restrictions on how edges may connect nodes

• An edge may be directed or undirected

• Directed edges represent a relationship from (say) node A to node B. Undirected
represent a relationship between node A and node B (no direction on the
relationship)



Graphs

• Graphs consist of nodes and edges

• Much like a tree! But no restrictions on how edges may connect nodes

• An edge may be directed or undirected

• Directed edges represent a relationship from (say) node A to node B. Undirected
represent a relationship between node A and node B (no direction on the
relationship)



Drawing Graphs

We usually draw graphs much like we drew trees. In directed graphs, we show the

direction of an edge with an arrow.



height

What are the nodes here? Edges?

Nodes: subway stops. An edge between two stops if there is a train between them.



height

What are the nodes here? Edges?

Nodes: subway stops. An edge between two stops if there is a train between them.



(Simplified) US Train Map

What are the nodes here? Edges?

Nodes: cities. An edge between two cities if there is a train between them. Note

that it’s not important how we draw the edges.



(Simplified) US Train Map

What are the nodes here? Edges?

Nodes: cities. An edge between two cities if there is a train between them. Note

that it’s not important how we draw the edges.



(Simplified) US Train Map

What are the nodes here? Edges?

Nodes: cities. An edge between two cities if there is a train between them. Note

that it’s not important how we draw the edges.



Internet Circa 1972

What are the nodes here? Edges?

Nodes: network access points. Edges represent a connection.



Internet Circa 1972

What are the nodes here? Edges?

Nodes: network access points. Edges represent a connection.



Internet Circa 1998



Word Game

Goal of the game: given two words, transform one into the other by changing one

letter at a time, always maintaining a legal word.

CORD→ WORD→ WORM

Two words are connected if they differ by one letter.



CS Prerequisite Graph

What are the nodes? Edges?

Is this graph a tree?



CS Prerequisite Graph

What are the nodes? Edges?

Is this graph a tree?



Relationships to Trees

• Every tree is a graph!

• But not every graph is a tree.



Relationships to Trees

• Every tree is a graph!

• But not every graph is a tree.



Flight Routes



Basic Definitions

• A graph G = (V,E) consists of two sets: V , the vertices (also known as nodes)

of G; and E, the edges of G

• Each edge e is defined by a pair of vertices: its indicent vertices.

• We write e = {u, v}. (If the edge is directed, it’s from u to v; otherwise it’s

between u and v.)

• We say that u and v are adjacent (they are connected by an edge)

• The neighbors of v are all nodes u that are adjacent to v



Basic Definitions

• A graph G = (V,E) consists of two sets: V , the vertices (also known as nodes)

of G; and E, the edges of G

• Each edge e is defined by a pair of vertices: its indicent vertices.

• We write e = {u, v}. (If the edge is directed, it’s from u to v; otherwise it’s

between u and v.)

• We say that u and v are adjacent (they are connected by an edge)

• The neighbors of v are all nodes u that are adjacent to v



Basic Definitions

• A graph G = (V,E) consists of two sets: V , the vertices (also known as nodes)

of G; and E, the edges of G

• Each edge e is defined by a pair of vertices: its indicent vertices.

• We write e = {u, v}. (If the edge is directed, it’s from u to v; otherwise it’s

between u and v.)

• We say that u and v are adjacent (they are connected by an edge)

• The neighbors of v are all nodes u that are adjacent to v



Basic Definitions

• A graph G = (V,E) consists of two sets: V , the vertices (also known as nodes)

of G; and E, the edges of G

• Each edge e is defined by a pair of vertices: its indicent vertices.

• We write e = {u, v}. (If the edge is directed, it’s from u to v; otherwise it’s

between u and v.)

• We say that u and v are adjacent (they are connected by an edge)

• The neighbors of v are all nodes u that are adjacent to v



Basic Definitions

• A graph G = (V,E) consists of two sets: V , the vertices (also known as nodes)

of G; and E, the edges of G

• Each edge e is defined by a pair of vertices: its indicent vertices.

• We write e = {u, v}. (If the edge is directed, it’s from u to v; otherwise it’s

between u and v.)

• We say that u and v are adjacent (they are connected by an edge)

• The neighbors of v are all nodes u that are adjacent to v



Paths in a graph

• Often we want to traverse a graph from one node to another

• A path from a vertex u to a vertex v in G is an alternating sequence of vertices

and edges:

u = v0, e1, v1, e2, . . . , vk−1, ek, vk = v

• Each each ei = {vi−1, vi} for all i = 1, . . . , k

• Note that this needs to follow the direction of the edge in a directed graph; for
an undirected graph the can go in either direction

• No edge can appear more than once: ei 6= ej if i 6= j

• In a simple path, no vertex appears more than once



Paths in a graph

• Often we want to traverse a graph from one node to another

• A path from a vertex u to a vertex v in G is an alternating sequence of vertices

and edges:

u = v0, e1, v1, e2, . . . , vk−1, ek, vk = v

• Each each ei = {vi−1, vi} for all i = 1, . . . , k

• Note that this needs to follow the direction of the edge in a directed graph; for
an undirected graph the can go in either direction

• No edge can appear more than once: ei 6= ej if i 6= j

• In a simple path, no vertex appears more than once



Paths in a graph

• Often we want to traverse a graph from one node to another

• A path from a vertex u to a vertex v in G is an alternating sequence of vertices

and edges:

u = v0, e1, v1, e2, . . . , vk−1, ek, vk = v

• Each each ei = {vi−1, vi} for all i = 1, . . . , k

• Note that this needs to follow the direction of the edge in a directed graph; for
an undirected graph the can go in either direction

• No edge can appear more than once: ei 6= ej if i 6= j

• In a simple path, no vertex appears more than once



Paths in a graph

• Often we want to traverse a graph from one node to another

• A path from a vertex u to a vertex v in G is an alternating sequence of vertices

and edges:

u = v0, e1, v1, e2, . . . , vk−1, ek, vk = v

• Each each ei = {vi−1, vi} for all i = 1, . . . , k

• Note that this needs to follow the direction of the edge in a directed graph; for
an undirected graph the can go in either direction

• No edge can appear more than once: ei 6= ej if i 6= j

• In a simple path, no vertex appears more than once



Paths in a graph

• Often we want to traverse a graph from one node to another

• A path from a vertex u to a vertex v in G is an alternating sequence of vertices

and edges:

u = v0, e1, v1, e2, . . . , vk−1, ek, vk = v

• Each each ei = {vi−1, vi} for all i = 1, . . . , k

• Note that this needs to follow the direction of the edge in a directed graph; for
an undirected graph the can go in either direction

• No edge can appear more than once: ei 6= ej if i 6= j

• In a simple path, no vertex appears more than once



Paths in a graph

• Often we want to traverse a graph from one node to another

• A path from a vertex u to a vertex v in G is an alternating sequence of vertices

and edges:

u = v0, e1, v1, e2, . . . , vk−1, ek, vk = v

• Each each ei = {vi−1, vi} for all i = 1, . . . , k

• Note that this needs to follow the direction of the edge in a directed graph; for
an undirected graph the can go in either direction

• No edge can appear more than once: ei 6= ej if i 6= j

• In a simple path, no vertex appears more than once



Path Continued

• A cycle is a simple path that begins and ends at the same vertex

• The length of a path or cycle is the number of edges in the sequence



Path Continued

• A cycle is a simple path that begins and ends at the same vertex

• The length of a path or cycle is the number of edges in the sequence



Word Game

Goal of the game: given two words, transform one into the other by changing one

letter at a time, always maintaining a legal word.

What does a path mean in this graph? What is the meaning of the length of the

path?



Flight Routes

What is a path? What is a cycle? What is the length of the path?

Takeaway: graphs really can represent a very broad variety of real-world problems.



Flight Routes

What is a path? What is a cycle? What is the length of the path?

Takeaway: graphs really can represent a very broad variety of real-world problems.



Reachability and Connectedness

• A vertex v is reachable from a vertex u if there is a path from u to v in G

• A graph is connected if for every path of vertices u and v, v is reachable from

u.

• What does it mean if one vertex is reachable from another in the graph of

flights? What does it mean if the flight graph is connected?



Reachability and Connectedness

• A vertex v is reachable from a vertex u if there is a path from u to v in G

• A graph is connected if for every path of vertices u and v, v is reachable from

u.

• What does it mean if one vertex is reachable from another in the graph of

flights? What does it mean if the flight graph is connected?



Reachability and Connectedness

• A vertex v is reachable from a vertex u if there is a path from u to v in G

• A graph is connected if for every path of vertices u and v, v is reachable from

u.

• What does it mean if one vertex is reachable from another in the graph of

flights? What does it mean if the flight graph is connected?



Connected Component

• All vertices reachable from v, along with all edges of G connecting two of

them, constitute the connected component of v.



Reachability Example



Determining Reachability



First Graph Algorithm Example

• Let’s say we’re given a graph G, and two vertices u and v in G

• How can we tell if u is reachable from v?

• Are there any nodes for which this question is easy?

• Start: check all neighbors of v. See if any of them are u.

• Then recurse! Check all of their neighbors, and so on.

• How can we implement this?



First Graph Algorithm Example

• Let’s say we’re given a graph G, and two vertices u and v in G

• How can we tell if u is reachable from v?

• Are there any nodes for which this question is easy?

• Start: check all neighbors of v. See if any of them are u.

• Then recurse! Check all of their neighbors, and so on.

• How can we implement this?



First Graph Algorithm Example

• Let’s say we’re given a graph G, and two vertices u and v in G

• How can we tell if u is reachable from v?

• Are there any nodes for which this question is easy?

• Start: check all neighbors of v. See if any of them are u.

• Then recurse! Check all of their neighbors, and so on.

• How can we implement this?



First Graph Algorithm Example

• Let’s say we’re given a graph G, and two vertices u and v in G

• How can we tell if u is reachable from v?

• Are there any nodes for which this question is easy?

• Start: check all neighbors of v. See if any of them are u.

• Then recurse! Check all of their neighbors, and so on.

• How can we implement this?



First Graph Algorithm Example

• Let’s say we’re given a graph G, and two vertices u and v in G

• How can we tell if u is reachable from v?

• Are there any nodes for which this question is easy?

• Start: check all neighbors of v. See if any of them are u.

• Then recurse! Check all of their neighbors, and so on.

• How can we implement this?



First Graph Algorithm Example

• Let’s say we’re given a graph G, and two vertices u and v in G

• How can we tell if u is reachable from v?

• Are there any nodes for which this question is easy?

• Start: check all neighbors of v. See if any of them are u.

• Then recurse! Check all of their neighbors, and so on.

• How can we implement this?



What operations do we need on graphs?

• Given a vertex v, need to be able to find all adjacent vertices of v

• Probably also want:

• Given vertices u and v, determine if they are adjacent

• Given a vertex v and an edge e, determine if v is incident to e

• Get all adjacent edges of v



What operations do we need on graphs?

• Given a vertex v, need to be able to find all adjacent vertices of v

• Probably also want:

• Given vertices u and v, determine if they are adjacent

• Given a vertex v and an edge e, determine if v is incident to e

• Get all adjacent edges of v



What operations do we need on graphs?

• Given a vertex v, need to be able to find all adjacent vertices of v

• Probably also want:

• Given vertices u and v, determine if they are adjacent

• Given a vertex v and an edge e, determine if v is incident to e

• Get all adjacent edges of v



What operations do we need on graphs?

• Given a vertex v, need to be able to find all adjacent vertices of v

• Probably also want:

• Given vertices u and v, determine if they are adjacent

• Given a vertex v and an edge e, determine if v is incident to e

• Get all adjacent edges of v



What operations do we need on graphs?

• Given a vertex v, need to be able to find all adjacent vertices of v

• Probably also want:

• Given vertices u and v, determine if they are adjacent

• Given a vertex v and an edge e, determine if v is incident to e

• Get all adjacent edges of v



Implementing our idea

• Basic premise: start with v. Check its neighbors, then their neighbors, and so

on.

• This algorithm is called Breadth-First Search

• What does this look like?



Implementing our idea

• Basic premise: start with v. Check its neighbors, then their neighbors, and so

on.

• This algorithm is called Breadth-First Search

• What does this look like?



Implementing our idea

• Basic premise: start with v. Check its neighbors, then their neighbors, and so

on.

• This algorithm is called Breadth-First Search

• What does this look like?



Breadth-First Search Example 1

A

B

C

D

E F

I

G

H

Z

Y

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Breadth-First Search Example 1

A

B

C

D

E F

I

G

H

Z

Y

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Breadth-First Search Example 1

A

B

C

D

E F

I

G

H

Z

Y

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Breadth-First Search Example 1

A

B

C

D

E F

I

G

H

Z

Y

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Breadth-First Search Example 1

A

B

C

D

E F

I

G

H

Z

Y

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Breadth-First Search Example 1

A

B

C

D

E F

I

G

H

Z

Y

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Breadth-First Search Example 1

A

B

C

D

E F

I

G

H

Z

Y

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Breadth-First Search Example 1

A

B

C

D

E F

I

G

H

Z

Y

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Breadth-First Search Example 1

A

B

C

D

E F

I

G

H

Z

Y

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Breadth-First Search Example 1

A

B

C

D

E F

I

G

H

Z

Y

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Breadth-First Search Example 2

A

B

C D

E

F G

H I

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Breadth-First Search Example 2

A

B

C D

E

F G

H I

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Breadth-First Search Example 2

A

B

C D

E

F G

H I

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Breadth-First Search Example 2

A

B

C D

E

F G

H I

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Breadth-First Search Example 2

A

B

C D

E

F G

H I

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Breadth-First Search Example 2

A

B

C D

E

F G

H I

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Breadth-First Search Example 2

A

B

C D

E

F G

H I

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Breadth-First Search Example 2

A

B

C D

E

F G

H I

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Breadth-First Search Example 2

A

B

C D

E

F G

H I

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Breadth-First Search Example 2

A

B

C D

E

F G

H I

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Plan

• Breadth-First Search is a lot like level order traversal!

• Start with a node. Explore its children in order. Then, explore their children (in

the same order)

• Plan: use a queue to store nodes that are waiting

• Let’s plan this out in more detail

• Use pseudocode: a description of an algorithm in code-like notation (without

worrying about language-specific details)



Plan

• Breadth-First Search is a lot like level order traversal!

• Start with a node. Explore its children in order. Then, explore their children (in

the same order)

• Plan: use a queue to store nodes that are waiting

• Let’s plan this out in more detail

• Use pseudocode: a description of an algorithm in code-like notation (without

worrying about language-specific details)



Plan

• Breadth-First Search is a lot like level order traversal!

• Start with a node. Explore its children in order. Then, explore their children (in

the same order)

• Plan: use a queue to store nodes that are waiting

• Let’s plan this out in more detail

• Use pseudocode: a description of an algorithm in code-like notation (without

worrying about language-specific details)



Plan

• Breadth-First Search is a lot like level order traversal!

• Start with a node. Explore its children in order. Then, explore their children (in

the same order)

• Plan: use a queue to store nodes that are waiting

• Let’s plan this out in more detail

• Use pseudocode: a description of an algorithm in code-like notation (without

worrying about language-specific details)



Plan

• Breadth-First Search is a lot like level order traversal!

• Start with a node. Explore its children in order. Then, explore their children (in

the same order)

• Plan: use a queue to store nodes that are waiting

• Let’s plan this out in more detail

• Use pseudocode: a description of an algorithm in code-like notation (without

worrying about language-specific details)



Breadth-First Search

// pre: all vertices are marked as unvisited

BFS(G, v) // Do a breadth-first search of G starting at v

count ← 0

Create empty queue Q
enqueue v
mark v as visited

count++

while Q isn’t empty:

current ← Q.dequeue()
for each unvisited neighbor u of current:

add u to Q

mark u as visited

count++

return count;



Implementing Graphs in Java

• What instance variables would we want our class to have? What methods?

• How can we store the vertices?

• How can we store the edges?



Implementing Graphs in Java

• What instance variables would we want our class to have? What methods?

• How can we store the vertices?

• How can we store the edges?



Implementing Graphs in Java

• What instance variables would we want our class to have? What methods?

• How can we store the vertices?

• How can we store the edges?


