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Admin

• Last week’s quiz back Wednesday

• Any questions?



Graphs



Purpose of Graphs

• Data structures up until this point have mostly been designed to store data for

easy access

• Much of them were essentially implementations of a Map (or Dictionary)

• Trees were, in some cases, able to store relationships between pieces of data

• Family tree: parent/child relationships

• Lexicon trie: relationship between nodes in the trie represented stored words

• Graphs: a new data structure to store relationships between data. (Graphs are

not particularly useful for Dictionary-like operations.)
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Graphs

• Graphs consist of nodes and edges

• Much like a tree! But no restrictions on how edges may connect nodes

• An edge may be directed or undirected

• Directed edges represent a relationship from (say) node A to node B. Undirected
represent a relationship between node A and node B (no direction on the
relationship)
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Drawing Graphs

We usually draw graphs much like we drew trees. In directed graphs, we show the

direction of an edge with an arrow.
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What are the nodes here? Edges?

Nodes: subway stops. An edge between two stops if there is a train between them.
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(Simplified) US Train Map

What are the nodes here? Edges?

Nodes: cities. An edge between two cities if there is a train between them. Note

that it’s not important how we draw the edges.
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What are the nodes here? Edges?

Nodes: network access points. Edges represent a connection.
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What are the nodes here? Edges?

Nodes: network access points. Edges represent a connection.



Internet Circa 1998



Word Game

Goal of the game: given two words, transform one into the other by changing one

letter at a time, always maintaining a legal word.

CORD→ WORD→ WORM

Two words are connected if they differ by one letter.



CS Prerequisite Graph

What are the nodes? Edges?

Is this graph a tree?
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Relationships to Trees

• Every tree is a graph!

• But not every graph is a tree.
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Basic Definitions

• A graph G = (V,E) consists of two sets: V , the vertices (also known as nodes)

of G; and E, the edges of G

• Each edge e is defined by a pair of vertices: its indicent vertices.

• We write e = {u, v}. (If the edge is directed, it’s from u to v; otherwise it’s

between u and v.)

• We say that u and v are adjacent (they are connected by an edge)

• The neighbors of v are all nodes u that are adjacent to v
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Paths in a graph

• Often we want to traverse a graph from one node to another

• A path from a vertex u to a vertex v in G is an alternating sequence of vertices

and edges:

u = v0, e1, v1, e2, . . . , vk−1, ek, vk = v

• Each each ei = {vi−1, vi} for all i = 1, . . . , k

• Note that this needs to follow the direction of the edge in a directed graph; for
an undirected graph the can go in either direction

• No edge can appear more than once: ei 6= ej if i 6= j

• In a simple path, no vertex appears more than once
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Path Continued

• A cycle is a simple path that begins and ends at the same vertex

• The length of a path or cycle is the number of edges in the sequence
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Word Game

Goal of the game: given two words, transform one into the other by changing one

letter at a time, always maintaining a legal word.

What does a path mean in this graph? What is the meaning of the length of the

path?



Flight Routes

What is a path? What is a cycle? What is the length of the path?

Takeaway: graphs really can represent a very broad variety of real-world problems.
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Reachability and Connectedness

• A vertex v is reachable from a vertex u if there is a path from u to v in G

• A graph is connected if for every path of vertices u and v, v is reachable from

u.

• What does it mean if one vertex is reachable from another in the graph of

flights? What does it mean if the flight graph is connected?
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Connected Component

• All vertices reachable from v, along with all edges of G connecting two of

them, constitute the connected component of v.



Reachability Example



Determining Reachability



First Graph Algorithm Example

• Let’s say we’re given a graph G, and two vertices u and v in G

• How can we tell if u is reachable from v?

• Are there any nodes for which this question is easy?

• Start: check all neighbors of v. See if any of them are u.

• Then recurse! Check all of their neighbors, and so on.

• How can we implement this?
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What operations do we need on graphs?

• Given a vertex v, need to be able to find all adjacent vertices of v

• Probably also want:

• Given vertices u and v, determine if they are adjacent

• Given a vertex v and an edge e, determine if v is incident to e

• Get all adjacent edges of v
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on.

• This algorithm is called Breadth-First Search

• What does this look like?
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Breadth-First Search Example 1
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currently traversing is marked in orange.
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Plan

• Breadth-First Search is a lot like level order traversal!

• Start with a node. Explore its children in order. Then, explore their children (in

the same order)

• Plan: use a queue to store nodes that are waiting

• Let’s plan this out in more detail

• Use pseudocode: a description of an algorithm in code-like notation (without

worrying about language-specific details)
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Breadth-First Search

// pre: all vertices are marked as unvisited

BFS(G, v) // Do a breadth-first search of G starting at v

count ← 0

Create empty queue Q
enqueue v
mark v as visited

count++

while Q isn’t empty:

current ← Q.dequeue()
for each unvisited neighbor u of current:

add u to Q

mark u as visited

count++

return count;



Implementing Graphs in Java

• What instance variables would we want our class to have? What methods?

• How can we store the vertices?

• How can we store the edges?
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