Introduction to Graphs

Instructors: Sam McCauley and Dan Barowy

May 2, 2022

• Last week's quiz back Wednesday

• Any questions?

Graphs

• Data structures up until this point have mostly been designed to *store data* for easy access

- Data structures up until this point have mostly been designed to *store data* for easy access
- Much of them were essentially implementations of a Map (or Dictionary)

- Data structures up until this point have mostly been designed to *store data* for easy access
- Much of them were essentially implementations of a Map (or Dictionary)
- Trees were, in some cases, able to store relationships between pieces of data

- Data structures up until this point have mostly been designed to *store data* for easy access
- Much of them were essentially implementations of a Map (or Dictionary)
- Trees were, in some cases, able to store relationships between pieces of data
 - Family tree: parent/child relationships

- Data structures up until this point have mostly been designed to *store data* for easy access
- Much of them were essentially implementations of a Map (or Dictionary)
- Trees were, in some cases, able to store relationships between pieces of data
 - Family tree: parent/child relationships
 - Lexicon trie: relationship between nodes in the trie represented stored words

- Data structures up until this point have mostly been designed to *store data* for easy access
- Much of them were essentially implementations of a Map (or Dictionary)
- Trees were, in some cases, able to store relationships between pieces of data
 - Family tree: parent/child relationships
 - · Lexicon trie: relationship between nodes in the trie represented stored words
- Graphs: a new data structure to store relationships between data. (Graphs are not particularly useful for Dictionary-like operations.)

• Graphs consist of *nodes* and *edges*

- Graphs consist of *nodes* and *edges*
- Much like a tree! But no restrictions on how edges may connect nodes

- Graphs consist of *nodes* and *edges*
- Much like a tree! But no restrictions on how edges may connect nodes
- An edge may be *directed* or *undirected*
 - Directed edges represent a relationship from (say) node *A* to node *B*. Undirected represent a relationship between node *A* and node *B* (no direction on the relationship)

Drawing Graphs

We usually draw graphs much like we drew trees. In directed graphs, we show the direction of an edge with an arrow.

height

What are the nodes here? Edges?

height

What are the nodes here? Edges?

Nodes: subway stops. An edge between two stops if there is a train between them.

(Simplified) US Train Map

What are the nodes here? Edges?

(Simplified) US Train Map

What are the nodes here? Edges?

Nodes: cities. An edge between two cities if there is a train between them. Note that it's not important how we draw the edges.

(Simplified) US Train Map

What are the nodes here? Edges?

Nodes: cities. An edge between two cities if there is a train between them. Note that it's not important how we draw the edges.

Internet Circa 1972

What are the nodes here? Edges?

Internet Circa 1972

What are the nodes here? Edges?

Nodes: network access points. Edges represent a connection.

Internet Circa 1998

Word Game

Goal of the game: given two words, transform one into the other by changing one letter at a time, always maintaining a legal word.

```
\mathsf{CORD} \to \mathsf{WORD} \to \mathsf{WORM}
```

Two words are connected if they differ by one letter.

CS Prerequisite Graph

What are the nodes? Edges?

CS Prerequisite Graph

What are the nodes? Edges?

Is this graph a tree?

• Every tree is a graph!

• Every tree is a graph!

• But not every graph is a tree.

Flight Routes

• A graph G = (V, E) consists of two sets: *V*, the vertices (also known as nodes) of *G*; and *E*, the edges of *G*

- A graph G = (V, E) consists of two sets: V, the vertices (also known as nodes) of G; and E, the edges of G
- Each edge *e* is defined by a pair of vertices: its indicent vertices.

- A graph G = (V, E) consists of two sets: V, the vertices (also known as nodes) of G; and E, the edges of G
- Each edge *e* is defined by a pair of vertices: its indicent vertices.
- We write $e = \{u, v\}$. (If the edge is directed, it's from *u* to *v*; otherwise it's between *u* and *v*.)

- A graph G = (V, E) consists of two sets: V, the vertices (also known as nodes) of G; and E, the edges of G
- Each edge *e* is defined by a pair of vertices: its indicent vertices.
- We write $e = \{u, v\}$. (If the edge is directed, it's from *u* to *v*; otherwise it's between *u* and *v*.)
- We say that *u* and *v* are *adjacent* (they are connected by an edge)

- A graph G = (V, E) consists of two sets: V, the vertices (also known as nodes) of G; and E, the edges of G
- Each edge *e* is defined by a pair of vertices: its indicent vertices.
- We write $e = \{u, v\}$. (If the edge is directed, it's from *u* to *v*; otherwise it's between *u* and *v*.)
- We say that *u* and *v* are *adjacent* (they are connected by an edge)
- The *neighbors* of *v* are all nodes *u* that are adjacent to *v*

• Often we want to traverse a graph from one node to another

- Often we want to traverse a graph from one node to another
- A *path* from a vertex *u* to a vertex *v* in *G* is an alternating sequence of vertices and edges:

$$u = v_0, e_1, v_1, e_2, \ldots, v_{k-1}, e_k, v_k = v$$

- Often we want to traverse a graph from one node to another
- A *path* from a vertex *u* to a vertex *v* in *G* is an alternating sequence of vertices and edges:

$$u = v_0, e_1, v_1, e_2, \dots, v_{k-1}, e_k, v_k = v$$

• Each each $e_i = \{v_{i-1}, v_i\}$ for all $i = 1, \dots, k$

- Often we want to traverse a graph from one node to another
- A *path* from a vertex *u* to a vertex *v* in *G* is an alternating sequence of vertices and edges:

$$u = v_0, e_1, v_1, e_2, \dots, v_{k-1}, e_k, v_k = v$$

- Each each $e_i = \{v_{i-1}, v_i\}$ for all i = 1, ..., k
 - Note that this needs to follow the direction of the edge in a directed graph; for an undirected graph the can go in either direction
- Often we want to traverse a graph from one node to another
- A *path* from a vertex *u* to a vertex *v* in *G* is an alternating sequence of vertices and edges:

$$u = v_0, e_1, v_1, e_2, \dots, v_{k-1}, e_k, v_k = v$$

- Each each $e_i = \{v_{i-1}, v_i\}$ for all $i = 1, \dots, k$
 - Note that this needs to follow the direction of the edge in a directed graph; for an undirected graph the can go in either direction
- No edge can appear more than once: $e_i \neq e_j$ if $i \neq j$

- Often we want to traverse a graph from one node to another
- A *path* from a vertex *u* to a vertex *v* in *G* is an alternating sequence of vertices and edges:

$$u = v_0, e_1, v_1, e_2, \dots, v_{k-1}, e_k, v_k = v$$

- Each each $e_i = \{v_{i-1}, v_i\}$ for all $i = 1, \dots, k$
 - Note that this needs to follow the direction of the edge in a directed graph; for an undirected graph the can go in either direction
- No edge can appear more than once: $e_i \neq e_j$ if $i \neq j$
- In a simple path, no vertex appears more than once

• A cycle is a simple path that begins and ends at the same vertex

• A cycle is a simple path that begins and ends at the same vertex

• The *length* of a path or cycle is the number of edges in the sequence

Word Game

Goal of the game: given two words, transform one into the other by changing one letter at a time, always maintaining a legal word.

What does a *path* mean in this graph? What is the meaning of the length of the path?

Flight Routes

What is a path? What is a cycle? What is the length of the path?

Flight Routes

What is a path? What is a cycle? What is the length of the path?

Takeaway: graphs really can represent a very broad variety of real-world problems.

• A vertex v is reachable from a vertex u if there is a path from u to v in G

- A vertex v is *reachable* from a vertex u if there is a path from u to v in G
- A graph is *connected* if for every path of vertices *u* and *v*, *v* is reachable from *u*.

- A vertex v is *reachable* from a vertex u if there is a path from u to v in G
- A graph is *connected* if for every path of vertices *u* and *v*, *v* is reachable from *u*.
- What does it mean if one vertex is reachable from another in the graph of flights? What does it mean if the flight graph is connected?

• All vertices reachable from *v*, along with all edges of *G* connecting two of them, constitute the *connected component* of *v*.

Reachability Example

Determining Reachability

• Let's say we're given a graph G, and two vertices u and v in G

- Let's say we're given a graph G, and two vertices u and v in G
- How can we tell if *u* is reachable from *v*?

- Let's say we're given a graph G, and two vertices u and v in G
- How can we tell if *u* is reachable from *v*?
- Are there any nodes for which this question is easy?

- Let's say we're given a graph G, and two vertices u and v in G
- How can we tell if *u* is reachable from *v*?
- Are there any nodes for which this question is easy?
- Start: check all neighbors of *v*. See if any of them are *u*.

- Let's say we're given a graph G, and two vertices u and v in G
- How can we tell if *u* is reachable from *v*?
- Are there any nodes for which this question is easy?
- Start: check all neighbors of *v*. See if any of them are *u*.
- Then recurse! Check all of their neighbors, and so on.

- Let's say we're given a graph G, and two vertices u and v in G
- How can we tell if *u* is reachable from *v*?
- Are there any nodes for which this question is easy?
- Start: check all neighbors of *v*. See if any of them are *u*.
- Then recurse! Check all of their neighbors, and so on.
- How can we implement this?

• Given a vertex v, need to be able to find all adjacent vertices of v

- Given a vertex v, need to be able to find *all adjacent vertices* of v
- Probably also want:

- Given a vertex v, need to be able to find all adjacent vertices of v
- Probably also want:
 - Given vertices u and v, determine if they are adjacent

- Given a vertex v, need to be able to find all adjacent vertices of v
- Probably also want:
 - Given vertices *u* and *v*, determine if they are adjacent
 - Given a vertex v and an edge e, determine if v is incident to e

- Given a vertex v, need to be able to find all adjacent vertices of v
- Probably also want:
 - Given vertices u and v, determine if they are adjacent
 - Given a vertex v and an edge e, determine if v is incident to e
 - Get all adjacent edges of v

• Basic premise: start with *v*. Check its neighbors, then their neighbors, and so on.

• Basic premise: start with *v*. Check its neighbors, then their neighbors, and so on.

• This algorithm is called *Breadth-First Search*

• Basic premise: start with v. Check its neighbors, then their neighbors, and so on.

• This algorithm is called *Breadth-First Search*

• What does this look like?

• Breadth-First Search is a lot like level order traversal!

- Breadth-First Search is a lot like level order traversal!
- Start with a node. Explore its children in order. Then, explore their children (in the same order)

- Breadth-First Search is a lot like level order traversal!
- Start with a node. Explore its children in order. Then, explore their children (in the same order)
- Plan: use a queue to store nodes that are waiting

- Breadth-First Search is a lot like level order traversal!
- Start with a node. Explore its children in order. Then, explore their children (in the same order)
- Plan: use a queue to store nodes that are waiting
- Let's plan this out in more detail

- Breadth-First Search is a lot like level order traversal!
- Start with a node. Explore its children in order. Then, explore their children (in the same order)
- Plan: use a queue to store nodes that are waiting
- Let's plan this out in more detail
- Use *pseudocode*: a description of an algorithm in code-like notation (without worrying about language-specific details)

```
// pre: all vertices are marked as unvisited
BFS(G, v) // Do a breadth-first search of G starting at v
  count \leftarrow 0
  Create empty queue Q
  enqueue V
  mark V as visited
  count++
   while Q isn't empty:
     current \leftarrow Q.dequeue()
     for each unvisited neighbor U of current:
        add u to Q
        mark U as visited
        count++
  return count;
```

• What instance variables would we want our class to have? What methods?

• What instance variables would we want our class to have? What methods?

• How can we store the vertices?

• What instance variables would we want our class to have? What methods?

• How can we store the vertices?

• How can we store the edges?