Graph Implementations 11

Instructors: Sam McCauley and Dan Barowy
May 7, 2022

Admin

Final review next Friday (no quiz!)

If you have an “exam hardship” let me know as soon as possible

Talk today at 2:35pm in Wege

e On equity of access in algorithms

Any questions?

Adjacency Matrix Representation

Adjacency Matrix

o

o | o

| |O|O

— ||| |OCO|OC (O™

Io|mMmMOO|®| >
o|lo|lo|o|o|o|o|o|>»
o|lo|o|o|o

- o
—|o|lo|o|o|o|o|o|m
o
o|lo|o|lo|o|o
o|lo|o|—

If there’s an Edge between i and j, Entry(7, /) stores it. Else, Entry(i,/) stores null.

(We use 1 in the picture, but in reality it will be a reference to some Edge object)

How to use the adjacency matrix

e How can we find the neighbors of a vertex v?

Go to corresponding row of matrix

Scan through the row. Each time we see a non-null Edge e, look at the two
vertices of e. The non-v vertex is a neighbor!

Let’s look at the code for Edge, and the node for neighbors() in GraphMatrix

Making the adjacency matrix work

e How can I look up a vertex in the matrix?
e We look up by label, but we need a specific row in the matrix

e Each GraphMatrixVertex object stores its own index for its row (in addition to
label, visited, etc.)

e How can we get the GraphMatrixVertex object that corresponds to a given
label (of type V)?

¢ Answer: a hash table!

Maintaining rows

Let's say we add a new vertex. What row should it be assigned? How can we
keep track of that?

One option: keep track of how many vertices there are. Assign any new

vertices to the next empty row.

What about deletes? Those cause an issue.

Solution: keep track of unused rows in a List

e Specifically, a SinglyLinkedList
e Called freeList

e Adding a new row, and removing the first vertex, are both O(1).

Graph Matrix Classes

GraphMatrixVertex and Vertex: classes for holding vertices

Edge: class for holding edges

GraphMatrix: abstract class for graphs stored using adjacency matrix

GraphMatrixDirected and GraphMatrixUndirected: any remaining methods
(that differ between directed and undirected graphs)

e Let's take a look!

Analyzing Adjacency Matrix Representation

Let’s say we have a graph with n vertices and m edges

How long does it take to find all neighbors of a vertex?

e O(n) (need to scan through all columns—coresponding to all vertices)

How long does it take to find the edge between vertices v; and v»,? To add a
new edge between two vertices?

e O(1)! Just need to look it up in the matrix

Space?

e O(n?) (Can be very large!)

Adjacency List Representation

Adjacency Lists

e The adjacency matrix was very wasteful of space, and finding the neighbors of
a vertex was very slow

e But, finding if there was an edge between two vertices was very fast

e Adjacency list representation: maintain a list of all edges that are indicent to
each vertex

e Only keep outgoing edges for directed graphs

e Usually going to be a singly linked list

e Abstract class GraphList, concrete classes GraphListDirected and
GraphListUndirected; also a new vertex class GraphListVertex

Adjacency List Visualization

T R
IR oaiaeion
IRNOREon

E o] F{n] |

i <[(o] |

G

H e[]

The vertices are stored in a Map<V, GraphListVertex<V,E>>. Each
GraphListVertex<V,E> contains a linked list of all edges with a given source

Adjacency List Visualization

]l e
g CNS N

The vertices are stored in a Map<V, GraphListVertex<V,E>>. Each
GraphListVertex<V,E> contains a linked list of all edges with a given source

Adjacency List Visualization

r | el el el]
g LI B e 1 W e CI

c o] o]]

; o] f—>in] |

F <[o]]

G HE

i e |

The vertices are stored in a Map<V, GraphListVertex<V,E>>. Each
GraphListVertex<V,E> contains a linked list of all edges with a given source

Adjacency List Visualization

The vertices are stored in a Map<V, GraphListVertex<V,E>>. Each
GraphListVertex<V,E> contains a linked list of all edges with a given source

Adjacency List Visualization: Undirected

<

= (3] al m o (@} o >

The vertices are stored in a Map<V, GraphListVertex<V,E>>. Each
GraphListVertex<V,E> contains a linked list of all edges incident to that vertex.

Creating adjacency list classes

What does GraphListVertex need on top of Vertex?

e Linked list of incident edges

What is the difference between GraphList and GraphMatrix?

e Do not need a free list of remaining vertices

e Do not need to know number of vertices ahead of time

GraphList is an abstract class for common methods; GraphListUndirected
and GraphListDirected are concrete

Let’s take a look

Operations on an adjacency list for a graph?

Let’s say we have a graph with n vertices and m edges

Getting all neighbors of a vertex?
o O(# neighbors)

The degree of the vertex is its number of neighbors. So we can say O(degree).

Adding a vertex or an edge?
° 0(1)

Removing a vertex?
o Expensive! Up to O(n + m)

Getting an edge?
e O(degree of vertex). Could be as bad as O(n)!

Space?
e O(1) space per vertex or edge. Total: O(n +m)

Adjacency List vs Adjacency Matrix

e Adjacency List is (often) much faster for listing neighbors of a vertex:

e Adjacency Matrix gives time proportional to the total number of vertices,
Adjacency List gives time proportional to the degree.

e Adjacency Matrix is much faster for looking up if there is an edge bettween
two vertices

e Adjacency List is much more space efficient if m < n?

	Adjacency Matrix Representation
	Adjacency List Representation

