
Graph Implementations II

Instructors: Sam McCauley and Dan Barowy

May 7, 2022



Admin

• Final review next Friday (no quiz!)

• If you have an “exam hardship” let me know as soon as possible

• Talk today at 2:35pm in Wege

• On equity of access in algorithms

• Any questions?



Adjacency Matrix Representation



Adjacency Matrix

If there’s an Edge between i and j, Entry(i, j) stores it. Else, Entry(i, j) stores null.

(We use 1 in the picture, but in reality it will be a reference to some Edge object)



How to use the adjacency matrix

• How can we find the neighbors of a vertex v?

• Go to corresponding row of matrix

• Scan through the row. Each time we see a non-null Edge e, look at the two

vertices of e. The non-v vertex is a neighbor!

• Let’s look at the code for Edge, and the node for neighbors() in GraphMatrix



Making the adjacency matrix work

• How can I look up a vertex in the matrix?

• We look up by label, but we need a specific row in the matrix

• Each GraphMatrixVertex object stores its own index for its row (in addition to

label, visited, etc.)

• How can we get the GraphMatrixVertex object that corresponds to a given

label (of type V)?

• Answer: a hash table!



Maintaining rows

• Let’s say we add a new vertex. What row should it be assigned? How can we

keep track of that?

• One option: keep track of how many vertices there are. Assign any new

vertices to the next empty row.

• What about deletes? Those cause an issue.

• Solution: keep track of unused rows in a List

• Specifically, a SinglyLinkedList

• Called freeList

• Adding a new row, and removing the first vertex, are both O(1).



Graph Matrix Classes

• GraphMatrixVertex and Vertex: classes for holding vertices

• Edge: class for holding edges

• GraphMatrix: abstract class for graphs stored using adjacency matrix

• GraphMatrixDirected and GraphMatrixUndirected: any remaining methods

(that differ between directed and undirected graphs)

• Let’s take a look!



Analyzing Adjacency Matrix Representation

• Let’s say we have a graph with n vertices and m edges

• How long does it take to find all neighbors of a vertex?

• O(n) (need to scan through all columns—coresponding to all vertices)

• How long does it take to find the edge between vertices v1 and v2? To add a
new edge between two vertices?

• O(1)! Just need to look it up in the matrix

• Space?

• O(n2) (Can be very large!)



Adjacency List Representation



Adjacency Lists

• The adjacency matrix was very wasteful of space, and finding the neighbors of
a vertex was very slow

• But, finding if there was an edge between two vertices was very fast

• Adjacency list representation: maintain a list of all edges that are indicent to
each vertex

• Only keep outgoing edges for directed graphs

• Usually going to be a singly linked list

• Abstract class GraphList, concrete classes GraphListDirected and

GraphListUndirected; also a new vertex class GraphListVertex



Adjacency List Visualization

The vertices are stored in a Map<V, GraphListVertex<V,E>>. Each

GraphListVertex<V,E> contains a linked list of all edges with a given source



Adjacency List Visualization

The vertices are stored in a Map<V, GraphListVertex<V,E>>. Each

GraphListVertex<V,E> contains a linked list of all edges with a given source



Adjacency List Visualization

The vertices are stored in a Map<V, GraphListVertex<V,E>>. Each

GraphListVertex<V,E> contains a linked list of all edges with a given source



Adjacency List Visualization

The vertices are stored in a Map<V, GraphListVertex<V,E>>. Each

GraphListVertex<V,E> contains a linked list of all edges with a given source



Adjacency List Visualization: Undirected

The vertices are stored in a Map<V, GraphListVertex<V,E>>. Each

GraphListVertex<V,E> contains a linked list of all edges incident to that vertex.



Creating adjacency list classes

• What does GraphListVertex need on top of Vertex?

• Linked list of incident edges

• What is the difference between GraphList and GraphMatrix?

• Do not need a free list of remaining vertices

• Do not need to know number of vertices ahead of time

• GraphList is an abstract class for common methods; GraphListUndirected

and GraphListDirected are concrete

• Let’s take a look



Operations on an adjacency list for a graph?

• Let’s say we have a graph with n vertices and m edges

• Getting all neighbors of a vertex?

• O(# neighbors)

• The degree of the vertex is its number of neighbors. So we can say O(degree).

• Adding a vertex or an edge?

• O(1)

• Removing a vertex?

• Expensive! Up to O(n+m)

• Getting an edge?

• O(degree of vertex). Could be as bad as O(n)!

• Space?

• O(1) space per vertex or edge. Total: O(n+m)



Adjacency List vs Adjacency Matrix

• Adjacency List is (often) much faster for listing neighbors of a vertex:

• Adjacency Matrix gives time proportional to the total number of vertices,
Adjacency List gives time proportional to the degree.

• Adjacency Matrix is much faster for looking up if there is an edge bettween

two vertices

• Adjacency List is much more space efficient if m < n2


	Adjacency Matrix Representation
	Adjacency List Representation

