Graph Implementations

Instructors: Sam McCauley and Dan Barowy
May 4, 2022

Admin

e Any questions?

Practice Quiz 11 Review

The general contract of hashcCode is:

Whenever it is invoked on the same object more than once during an execution of a Java
application, the hashCode method must consistently return the same integer, provided no
information used in equals comparisons on the object is modified. This integer need not
remain consistent from one execution of an application to another execution of the same
application.

If two objects are equal according to the equals (Object) method, then calling the
hashCode method on each of the two objects must produce the same integer result.

It is not required that if two objects are unequal according to the
equals(java.lang.0Object) method, then calling the hashCode method on each of the
two objects must produce distinct integer results. However, the programmer should be aware
that producing distinct integer results for unequal objects may improve the performance of
hash tables.

(Reminder of Java hashcode rules)

Breadth-First Search

BFS

Breadth-First Search (BFS) is a lot like level order traversal!

Start with a node. Explore its children in order. Then, explore their children (in
the same order)

Plan: use a queue to store nodes that are waiting

Use pseudocode: a description of an algorithm in code-like notation (without
worrying about language-specific details)

Breadth-First Search

// pre: all vertices are marked as unvisited
BFS(G, v) // Do a breadth-first search of G starting at v
count < 0
Create empty queue Q
enqueue V
mark v as visited
count++
while Q isn’t empty:
current < Q.dequeue()
for each unvisited neighbor u of current:
add U to Q
mark U as visited
count++

return count;

Analyzing BFS

e Can we prove: BFS(G,v) visits exactly the vertices u that are reachable from v?

e Why is this true intuitively?
o If we explore the neighbors of v, and their neighbors, etc., we surely need to get
to u eventually

e More concretely: if u is reachable from v, then there must be a path from v to u.
The first node on the path is v, which is reached. The second node is a neighbor
of v, which is reached. The third node...

e How can we formulate this as a more-formal induction?

e The distance between a vertex v and a vertex u is the minimum length of all
paths between v and u (denoted d(v, u))

e Induction on the distance between v and the target vertex

BFS Induction

e Base case (d =): if d(v,u) = O, then u = v. BFS visits v, so BFS also visits u.

e Inductive Hypothesis: For some d > O, for all vertices u with d(v,u) = d,
BFS(G,v) visits u.

e Inductive step: consider some u where d(v,u) = d + 1. Then there is a path of
length d + 1 from v to u:

V=Vg,€1,V1,...Vqg,€d4+1,Vag+1 = U

Then there is a path of length d from v to v4. By the Inductive Hypothesis, vq is
visited by BFS(G,v) and added to Q. Then v, is removed from Q, and u is
visited.

Induction on Graphs and Trees

o We'll see a few more examples

e Same basic parts!

e Often: remove one node to obtain a smaller instance. Then, use the inductive
hypothesis.

Interesting BFS Aside

e We visit vertices in order of distance

e So: with some extra bookkeeping, can use BFS to calculate the shortest path
in a graph!

o We'll come back to this next week

Implementing Graphs

First: Graph Interface

e Supports storing a value at each vertex and edge

e Called a label

e Can be any kind of object. (That is to say: we'll use generic types for both.)

e Support methods for:

e Get the value of a vertex or edge

e Add/remove vertices and edges

e Search for vertex/edge labels

e Query/change “visited” state of vertices and edges

e Iterators of vertices, neighbors, edges

Graph Interface Methods

e void add(V vtx), V remove(V vtx)
o Add/remove vertex to the graph

e void addEdge(V vtxl, V vtx2, E edgelabel), E removeEdge(V vtxl, V
vtx2)

e Add/remove edge between vix1 and vix2

e boolean containsEdge(V vtxl, V vtx2)

e Returns if there is an edge between vtx1 and vtx2

e Edge<V,E> getEdge(V vtxl, V vtx2)
e Returns the edge between vtx1 and vtx2

e void clear()

e Remove all nodes and edges from the graph

Graph Interface Methods (2)

e boolean visit(V vertexLabel)

e Mark vertex as “visited”; returns previous value of visited flag

boolean visitEdge (Edge<V,E> e)

e Mark edge as “visited”

boolean isVisited(V vtx), boolean isVisitedEdge (Edge<V,E> e)
e Returns if given vertex/edge has been visited

Iterator<V> neighbors(V vtx)

e Get iterator for all neighbors of vtx. (Out-edges only for directed graphs.)

Iterator<V> iterator()
o Get vertex iterator

e void reset()

e Reset all visited flags

Pseudocode to Code

// pre: all vertices are
unvisited
BFS(G, v):
count < 0
Create empty queue Q
Q.enqueue (V)
mark v as visited
count++
while Q isn’t empty:
current < Q.dequeue()
for each unvisited
neighbor u of
current:
Q.enqueue (u)
mark U as visited
count++

return count;

public static <V,E> int BFS(Graph<V,E> g, V

src) {
Queue<V> todo = new QueueList<V>();
todo.enqueue (src) ;
g.visit(src);
int count = 1;
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<V> neighbors =
g.neighbors(node) ;
while (neighbors.hasNext()) {
V next = neighbors.next();
if ('g.isVisited(next)) {
g.visit(next); count++;
todo.enqueue (next) ;

3

Creating a Graph

e Let's look at some code to create
this graph

e Then, we’ll run BFS on it

How can we store the edges of a graph?

¢ Need to be able to quickly determine the neighbors of a vertex, what edges
are adjacent to it, etc.

e Two options:

e Adjacency Matrix (Adjacency Array)

e Adjacency List

Adjacency Matrix Representation

Adjacency Matrix

o

o | o

| |O|O

— ||| |OCO|OC (O™

Io|mMmMOO|®| >
o|lo|lo|o|o|o|o|o|>»
o|lo|o|o|o

- o
—|o|lo|o|o|o|o|o|m
o
o|lo|o|lo|o|o
o|lo|o|—

If there’s an Edge between i and j, Entry(7, /) stores it. Else, Entry(i,/) stores null.

(We use 1 in the picture, but in reality it will be a reference to some Edge object)

Adjacency Matrix

e How can we store a matrix?

One option: two-dimensional array

Works just like an array, but with two indices to access each element

So: can access e.g. data[i] [j]

Has fixed size (like an array)

How to use the adjacency matrix

e How can we find the neighbors of a vertex v?

Go to corresponding row of matrix

Scan through the row. Each time we see a non-null Edge e, look at the two
vertices of e. The non-v vertex is a neighbor!

Let’s look at the code for Edge, and the node for neighbors() in GraphMatrix

Making the adjacency matrix work

e How can I look up a vertex in the matrix?
e We look up by label, but we need a specific row in the matrix

e Each GraphMatrixVertex object stores its own index for its row (in addition to
label, visited, etc.)

e How can we get the GraphMatrixVertex object that corresponds to a given
label (of type V)?

e Answer: a hash table!

Graph Matrix Classes

GraphMatrixVertex and Vertex: classes for holding vertices

Edge: class for holding edges

GraphMatrix: abstract class for graphs stored using adjacency matrix

GraphMatrixDirected and GraphMatrixUndirected: any remaining methods
(that differ between directed and undirected graphs)

e Let's take a look!

Analyzing Adjacency Matrix Representation

Let’s say we have a graph with n vertices and m edges

How long does it take to find all neighbors of a vertex?

e O(n) (need to scan through all columns—coresponding to all vertices)

How long does it take to find the edge between vertices v; and v»,? To add a
new edge between two vertices?

e O(1)! Just need to look it up in the matrix

Space?

e O(n?) (Can be very large!)

Adjacency List Representation

Adjacency Lists

e The adjacency matrix was very wasteful of space, and finding the neighbors of
a vertex was very slow

e But, finding if there was an edge between two vertices was very fast

e Adjacency list representation: maintain a list all edges that are indicent to
each vertex

e Only keep outgoing edges for directed graphs

e Usually going to be a singly linked list

e Abstract class GraphList, concrete classes GraphListDirected and
GraphListUndirected; also a new vertex class GraphListVertex

Adjacency List Visualization

T R
IR oaiaeion
IRNOREon

E o] F{n] |

i <[(o] |

G

H e[]

The vertices are stored in a Map<V, GraphListVertex<V,E>>. Each
GraphListVertex<V,E> contains a linked list of all edges with a given source

Adjacency List Visualization

]l e
g CNS N

The vertices are stored in a Map<V, GraphListVertex<V,E>>. Each
GraphListVertex<V,E> contains a linked list of all edges with a given source

Adjacency List Visualization

r | el el el]
g LI B e 1 W e CI

c o] o]]

; o] f—>in] |

F <[o]]

G HE

i e |

The vertices are stored in a Map<V, GraphListVertex<V,E>>. Each
GraphListVertex<V,E> contains a linked list of all edges with a given source

Adjacency List Visualization

The vertices are stored in a Map<V, GraphListVertex<V,E>>. Each
GraphListVertex<V,E> contains a linked list of all edges with a given source

Adjacency List Visualization: Undirected

<

= (3] al m o (@} o >

The vertices are stored in a Map<V, GraphListVertex<V,E>>. Each
GraphListVertex<V,E> contains a linked list of all edges indident to that vertex.

Creating adjacency list classes

e What does GraphListVertex need on top of Vertex?

e What is the difference between GraphList and GraphMatrix?

e Do not need a free list of remaining vertices

¢ Do not need to know number of vertices ahead of time

e Let’s take a look

Operations on an adjacency list for a graph?

Let’s say we have a graph with n vertices and m edges

Getting all neighbors of a vertex?

e O(# neighbors)

Adding or removing a vertex?

e O(1)

Getting an edge?

o O(# neighbors of vertex). Could be as bad as O(n)!

Space?

o O(1) space per vertex or edge. Total: O(n + m)

Adjacency List vs Adjacency Matrix

e Adjacency List is (often) much faster for listing neighbors of a vertex:

e Adjacency Matrix gives time proportional to the total number of vertices,
Adjacency List gives time proportional to the number of neighbors

e Adjacency Matrix is much faster for looking up if there is an edge bettween
two vertices

e Adjacency List is much more space efficient if m < n?

	Breadth-First Search
	Implementing Graphs
	Adjacency Matrix Representation
	Adjacency List Representation

