
Graph Implementations

Instructors: Sam McCauley and Dan Barowy

May 4, 2022



Admin

• Any questions?



Practice Quiz 11 Review

(Reminder of Java hashcode rules)



Breadth-First Search



BFS

• Breadth-First Search (BFS) is a lot like level order traversal!

• Start with a node. Explore its children in order. Then, explore their children (in

the same order)

• Plan: use a queue to store nodes that are waiting

• Use pseudocode: a description of an algorithm in code-like notation (without

worrying about language-specific details)



Breadth-First Search

// pre: all vertices are marked as unvisited

BFS(G, v) // Do a breadth-first search of G starting at v

count ← 0

Create empty queue Q
enqueue v
mark v as visited

count++

while Q isn’t empty:

current ← Q.dequeue()
for each unvisited neighbor u of current:

add u to Q

mark u as visited

count++

return count;



Analyzing BFS

• Can we prove: BFS(G,v) visits exactly the vertices u that are reachable from v?

• Why is this true intuitively?

• If we explore the neighbors of v, and their neighbors, etc., we surely need to get
to u eventually

• More concretely: if u is reachable from v, then there must be a path from v to u.
The first node on the path is v, which is reached. The second node is a neighbor
of v, which is reached. The third node. . .

• How can we formulate this as a more-formal induction?

• The distance between a vertex v and a vertex u is the minimum length of all

paths between v and u (denoted d(v, u))

• Induction on the distance between v and the target vertex



BFS Induction

• Base case (d = 0): if d(v, u) = 0, then u = v. BFS visits v, so BFS also visits u.

• Inductive Hypothesis: For some d ≥ 0, for all vertices u with d(v, u) = d,

BFS(G,v) visits u.

• Inductive step: consider some u where d(v, u) = d + 1. Then there is a path of

length d + 1 from v to u:

v = v0, e1, v1, . . . vd, ed+1, vd+1 = u

Then there is a path of length d from v to vd. By the Inductive Hypothesis, vd is

visited by BFS(G,v) and added to Q. Then vd is removed from Q, and u is

visited.



Induction on Graphs and Trees

• We’ll see a few more examples

• Same basic parts!

• Often: remove one node to obtain a smaller instance. Then, use the inductive

hypothesis.



Interesting BFS Aside

• We visit vertices in order of distance

• So: with some extra bookkeeping, can use BFS to calculate the shortest path

in a graph!

• We’ll come back to this next week



Implementing Graphs



First: Graph Interface

• Supports storing a value at each vertex and edge

• Called a label

• Can be any kind of object. (That is to say: we’ll use generic types for both.)

• Support methods for:

• Get the value of a vertex or edge

• Add/remove vertices and edges

• Search for vertex/edge labels

• Query/change “visited” state of vertices and edges

• Iterators of vertices, neighbors, edges



Graph Interface Methods

• void add(V vtx), V remove(V vtx)

• Add/remove vertex to the graph

• void addEdge(V vtx1, V vtx2, E edgeLabel), E removeEdge(V vtx1, V

vtx2)

• Add/remove edge between vtx1 and vtx2

• boolean containsEdge(V vtx1, V vtx2)

• Returns if there is an edge between vtx1 and vtx2

• Edge<V,E> getEdge(V vtx1, V vtx2)

• Returns the edge between vtx1 and vtx2

• void clear()

• Remove all nodes and edges from the graph



Graph Interface Methods (2)

• boolean visit(V vertexLabel)

• Mark vertex as “visited”; returns previous value of visited flag

• boolean visitEdge(Edge<V,E> e)

• Mark edge as “visited”

• boolean isVisited(V vtx), boolean isVisitedEdge(Edge<V,E> e)

• Returns if given vertex/edge has been visited

• Iterator<V> neighbors(V vtx)

• Get iterator for all neighbors of vtx. (Out-edges only for directed graphs.)

• Iterator<V> iterator()

• Get vertex iterator

• void reset()

• Reset all visited flags



Pseudocode to Code

// pre: all vertices are

unvisited

BFS(G, v):

count ← 0

Create empty queue Q
Q.enqueue(v)
mark v as visited

count++

while Q isn’t empty:

current ← Q.dequeue()
for each unvisited

neighbor u of

current:

Q.enqueue(u)
mark u as visited

count++

return count;

public static <V,E> int BFS(Graph<V,E> g, V

src) {

Queue<V> todo = new QueueList<V>();

todo.enqueue(src);

g.visit(src);

int count = 1;

while (!todo.isEmpty()) {

V node = todo.dequeue();

Iterator<V> neighbors =

g.neighbors(node);

while (neighbors.hasNext()) {

V next = neighbors.next();

if (!g.isVisited(next)) {

g.visit(next); count++;

todo.enqueue(next);

}

}

}

return count;

}



Creating a Graph

• Let’s look at some code to create

this graph

• Then, we’ll run BFS on it



How can we store the edges of a graph?

• Need to be able to quickly determine the neighbors of a vertex, what edges

are adjacent to it, etc.

• Two options:

• Adjacency Matrix (Adjacency Array)

• Adjacency List



Adjacency Matrix Representation



Adjacency Matrix

If there’s an Edge between i and j, Entry(i, j) stores it. Else, Entry(i, j) stores null.

(We use 1 in the picture, but in reality it will be a reference to some Edge object)



Adjacency Matrix

• How can we store a matrix?

• One option: two-dimensional array

• Works just like an array, but with two indices to access each element

• So: can access e.g. data[i][j]

• Has fixed size (like an array)



How to use the adjacency matrix

• How can we find the neighbors of a vertex v?

• Go to corresponding row of matrix

• Scan through the row. Each time we see a non-null Edge e, look at the two

vertices of e. The non-v vertex is a neighbor!

• Let’s look at the code for Edge, and the node for neighbors() in GraphMatrix



Making the adjacency matrix work

• How can I look up a vertex in the matrix?

• We look up by label, but we need a specific row in the matrix

• Each GraphMatrixVertex object stores its own index for its row (in addition to

label, visited, etc.)

• How can we get the GraphMatrixVertex object that corresponds to a given

label (of type V)?

• Answer: a hash table!



Graph Matrix Classes

• GraphMatrixVertex and Vertex: classes for holding vertices

• Edge: class for holding edges

• GraphMatrix: abstract class for graphs stored using adjacency matrix

• GraphMatrixDirected and GraphMatrixUndirected: any remaining methods

(that differ between directed and undirected graphs)

• Let’s take a look!



Analyzing Adjacency Matrix Representation

• Let’s say we have a graph with n vertices and m edges

• How long does it take to find all neighbors of a vertex?

• O(n) (need to scan through all columns—coresponding to all vertices)

• How long does it take to find the edge between vertices v1 and v2? To add a
new edge between two vertices?

• O(1)! Just need to look it up in the matrix

• Space?

• O(n2) (Can be very large!)



Adjacency List Representation



Adjacency Lists

• The adjacency matrix was very wasteful of space, and finding the neighbors of
a vertex was very slow

• But, finding if there was an edge between two vertices was very fast

• Adjacency list representation: maintain a list all edges that are indicent to
each vertex

• Only keep outgoing edges for directed graphs

• Usually going to be a singly linked list

• Abstract class GraphList, concrete classes GraphListDirected and

GraphListUndirected; also a new vertex class GraphListVertex



Adjacency List Visualization

The vertices are stored in a Map<V, GraphListVertex<V,E>>. Each

GraphListVertex<V,E> contains a linked list of all edges with a given source



Adjacency List Visualization

The vertices are stored in a Map<V, GraphListVertex<V,E>>. Each

GraphListVertex<V,E> contains a linked list of all edges with a given source



Adjacency List Visualization

The vertices are stored in a Map<V, GraphListVertex<V,E>>. Each

GraphListVertex<V,E> contains a linked list of all edges with a given source



Adjacency List Visualization

The vertices are stored in a Map<V, GraphListVertex<V,E>>. Each

GraphListVertex<V,E> contains a linked list of all edges with a given source



Adjacency List Visualization: Undirected

The vertices are stored in a Map<V, GraphListVertex<V,E>>. Each

GraphListVertex<V,E> contains a linked list of all edges indident to that vertex.



Creating adjacency list classes

• What does GraphListVertex need on top of Vertex?

• What is the difference between GraphList and GraphMatrix?

• Do not need a free list of remaining vertices

• Do not need to know number of vertices ahead of time

• Let’s take a look



Operations on an adjacency list for a graph?

• Let’s say we have a graph with n vertices and m edges

• Getting all neighbors of a vertex?

• O(# neighbors)

• Adding or removing a vertex?

• O(1)

• Getting an edge?

• O(# neighbors of vertex). Could be as bad as O(n)!

• Space?

• O(1) space per vertex or edge. Total: O(n+m)



Adjacency List vs Adjacency Matrix

• Adjacency List is (often) much faster for listing neighbors of a vertex:

• Adjacency Matrix gives time proportional to the total number of vertices,
Adjacency List gives time proportional to the number of neighbors

• Adjacency Matrix is much faster for looking up if there is an edge bettween

two vertices

• Adjacency List is much more space efficient if m < n2


	Breadth-First Search
	Implementing Graphs
	Adjacency Matrix Representation
	Adjacency List Representation

