
Generics and Dictionaries

Instructors: Sam McCauley and Dan Barowy

February 17, 2022



Today

• Vectors and Associations

• How generics in Java can help us avoid objects

• Using Vectors and Associations to create a Dictionary

• Towards the end: example program to calculate frequencies of words in a

document



Dictionaries



Dictionary

• One of (if not the) most important data structures that exist

• Google, one could argue, essentially just makes Dictionaries

• OK fine they do way more than that.

• BUT their ability to scale, particularly in the context of dictionary operations, is
what puts them ahead

• We will learn several ways of implementing a dictionary in this course

• First: what is a dictionary? And how can we implement it using Java?



Dictionary data structure

• Store data associated with a set of keys

• Goal: for a given key, want to be able to look up the associated data (which we

call a value)

• For example: let’s say we have a list of words. We want to be able to look up
the definition of any word.

• keys are the words

• definitions are the values

• For Google: given a keyword, find all websites that contain that keyword

• Given a course name, find the list of all students that are taking that course



Dictionary Goals

• Should be fast

• We’ll be improving dictionary performance throughout the course

• method contains(key) returns a boolean

• method getValue(key) should get the value associated with a key

• Want to be able to update dictionary: add(key, value) and delete(key,

value)

• Each key should appear once. (Why?)

• Unambiguous lookup! If a query a key, I should know exactly what value I’m
getting



Implementing a dictionary

• Any ideas? What do we need to do conceptually?

• Need to store our keys.

• How?

• Perhaps in an array

• Downside of an array?

• Fixed size: would need to know how many keys are in our dictionary ahead of
time

• For each key, need to store an associated value

• How can we store the relationship between a key and its value?

• Let’s make a class for that. We can call it an Association



Association

• Stores a pair of objects (for us, it will be a key and a value)

• What data do we want to store? What is the type of this data?

• What operations do we want?

• Let’s look at a simple Association implementation



An Association

public class Association {

protected Object theKey;

protected Object theValue;

public Association (Object key, Object value) {

theKey = key;

theValue = value;

}

public Object getKey() {return theKey;}

public Object getValue() {return theValue;}

public Object setValue(Object value) {

V old = theValue;

theValue = value;

return old;

}

}



Association: Downsides

• What’s annoying about the current kind of Association?

• Let’s try to use it to store a word and its definition. How do we get the

definition?

• The problem: everything we’re storing is an Object. We’re not storing its type.

• This is not very Java-y! And, in fact, may lead to issues

• Example: if we mess up the type in Java usually, it’s a compile-time error

• If we get the wrong type here, it’s a run-time error

• Let’s look at a simple program that stores items in an association.



Objects can be tricky!

public class UseAssociation {

public static void main(String[] args) {

Student a = new Student(19, "Sam", ’A’);

String gradingMessage = "Great job Sam!";

Association pair = new Association(a, gradingMessage);

//System.out.println(pair.getKey().getName()); // compile time error

System.out.println(((Student)pair.getKey()).getName()); // works

System.out.println(((Student)pair.getValue()).getName());//run time error

}

}



What do we really want out of an Association?

• We’d like to be able to store two objects of a particular type in our

Association

• We always know what type an object is when we store it

• We always told Java “I want an array of ints” (or something)

• Can we do the same for Associations? “I want an Association between a

String and a String”

• Then methods like getValue(key) will return an object of the particular type

we want!



Generics



Generics

• A way to create a general class that allows us to fill in the type

• We tell Java what kind of Association (etc.) we want

• Can use multiple kinds of Association for various use cases

• But, the underlying code logic remains the same!!



A Generic Association

public class Association<K,V> {

protected K theKey;

protected V theValue;

//pre: key != null

public Association (K key, V value) {

theKey = key;

theValue = value;

}

public K getKey() {return theKey;}

public V getValue() {return theValue;}

public V setValue(V value) {

V old = theValue;

theValue = value;

return old;

}

}



Using a Generic Association

• Every time we use the word Association, we use angle brackets to denote the

type of the key and the type of the value

• every time you write Association, you should write the type in angle brackets



A Note on Generics

• Can’t use primitive types with generics in Java

• Instead, need to use the object equivalent of each primitive type: Integer,

Character, Boolean, etc.

• An Association that associates an integer with another integer would be

Association<Integer, Integer>

• To be clear: can’t do Association<int, int>. But they do exactly the same

thing!

• (Java handles casting between int and Integer for you.)



Back to Dictionaries

• So: we can store a key-value pair using an association

• How do we store all key-value pairs?

• Could use an array, but those are not great

• Right away: can’t resize!

• Can be annoying to use

• It would be really nice if there was an array-like class that was resizeable and

had some useful methods



Vectors



Note on Vectors

• We’ll focus on structure5, the code that comes with the textbook

• You need to place it on the machines you code with this semester. Instructions

linked from the lab assignment page; let us know in lab if you have issues

• Java has a built-in, very similar, Vector class (from java.util.Vector). Don’t

use this in this class! Use the structure5 version instead.



Vectors

• An OOP version of arrays

• Don’t need to know the size up front

• Come with other useful methods:

• Check if an item exists in the Vector

• “Insert” an item in the middle of the Vector

• Implemented with a Java class that we can all read



Vectors

• API can be found in javadocs (linked from lectures page, and here:

http://www.cs.williams.edu/~bailey/JavaStructures/doc/structure5/

structure5/Vector.html

• Highlights:

• get(int) and set(int, E) are equivalent to []

• size() instead of .length

• Extra stuff like add(int, E) to add an element at a location (shifting

remaining elements down), contains(E) to check if the Vector contains a

given element

• and toString() (finally!)

http://www.cs.williams.edu/~bailey/JavaStructures/doc/structure5/structure5/Vector.html
http://www.cs.williams.edu/~bailey/JavaStructures/doc/structure5/structure5/Vector.html


Vector back end

• We’ll talk about how to implement a Vector next class. Let’s focus on using

them for now.

• Vectors use generics! Always specify the type of items in your Vector every

time you write Vector

• So a vector of ints would be of type Vector<Integer>

• Basic idea: can access specific elements using get(int) and set(int,E)



Quick Vector Example

import structure5.*;

public class UseVector{

public static void main(String[] args) {

Vector<Integer> newVector = new Vector<Integer>();

newVector.add(1);

newVector.add(2);

newVector.set(1, 4);

System.out.println(newVector);

}

}



Creating a Dictionary<K,V>

• How can we store a dictionary? Specifically, with keys of type K and values of

type V. So a Dictionary<K,V>

• Each key-value pair is stored in an Association<K,V>

• All of the pairs are stored in a vector. What is the type of item stored in the
vector?

• Each item in the vector is of type Association<K,V>

• So we’re looking for a Vector< Association<K,V> >

• Let’s look quickly at how to implement a (very simple, with many missing

methods) Dictionary<K,V>. We’ll come back to this on Monday.



Count Word Frequencies



Let’s Solve a Problem Together!

• User inputs a sequence of words

• We want to keep track of how many times each word appears

• Let’s plan this out

• What data structure do we want to use?

• What does out data structure need to store?

• What operations do we need to support?

• We want to keep track of, for a given word, how many times it appears

• Sounds like each pair is a Association<String, Integer>

• Store all pairs in a Vector< Association<String, Integer> >



Keeping track of word frequency counts

• What happens when a new word comes in?

• Depends on if it’s stored already or not

• If it’s stored, increment the relevant count

• Otherwise, add a new association with count 1

• How can we print things out when we’re done?

• Loop through the Vector, printing each item



Let’s look at the code!


	Dictionaries
	Generics
	Vectors
	Count Word Frequencies

