Generics and Dictionaries

Instructors: Sam McCauley and Dan Barowy
February 17, 2022



Today

Vectors and Associations

How generics in Java can help us avoid objects

Using Vectors and Associations to create a Dictionary

Towards the end: example program to calculate frequencies of words in a
document



Dictionaries



Dictionary

One of (if not the) most important data structures that exist

Google, one could argue, essentially just makes Dictionaries

¢ OK fine they do way more than that.

e BUT their ability to scale, particularly in the context of dictionary operations, is
what puts them ahead

We will learn several ways of implementing a dictionary in this course

First: what is a dictionary? And how can we implement it using Java?



Dictionary data structure

e Store data associated with a set of keys

e Goal: for a given key, want to be able to look up the associated data (which we
call a value)

e For example: let’s say we have a list of words. We want to be able to look up
the definition of any word.

e keys are the words

¢ definitions are the values

e For Google: given a keyword, find all websites that contain that keyword

e Given a course name, find the list of all students that are taking that course



Dictionary Goals

Should be fast

e We’'ll be improving dictionary performance throughout the course

method contains (key) returns a boolean

method getValue (key) should get the value associated with a key

Want to be able to update dictionary: add (key, value) and delete(key,

value)

Each key should appear once. (Why?)

e Unambiguous lookup! If a query a key, I should know exactly what value I'm
getting



Implementing a dictionary

e Any ideas? What do we need to do conceptually?

e Need to store our keys.
e How?
e Perhaps in an array
e Downside of an array?
o Fixed size: would need to know how many keys are in our dictionary ahead of
time
e For each key, need to store an associated value

e How can we store the relationship between a key and its value?

e Let's make a class for that. We can call it an Association



Association

Stores a pair of objects (for us, it will be a key and a value)

What data do we want to store? What is the type of this data?

What operations do we want?

Let’s look at a simple Association implementation



An Association

public class Association {
protected Object theKey;
protected Object theValue;

public Association (Object key, Object value) {
theKey = key;
theValue = value;

public Object getKey() {return theKey;}
public Object getValue() {return theValue;}
public Object setValue(Object value) {

V old = theValue;

theValue = value;

return old;




Association: Downsides

e What’s annoying about the current kind of Association?

e Let’s try to use it to store a word and its definition. How do we get the
definition?

e The problem: everything we're storing is an Object. We're not storing its type.
e This is not very Java-y! And, in fact, may lead to issues

e Example: if we mess up the type in Java usually, it's a compile-time error

o If we get the wrong type here, it's a run-time error

e Let’s look at a simple program that stores items in an association.



Objects can be tricky!

public class UseAssociation {

public static void main(String[] args) {
Student a = new Student(19, "Sam", ’A’);
String gradingMessage = "Great job Sam!";
Association pair = new Association(a, gradingMessage);
//System.out.println(pair.getKey() .getName()); // compile time error
System.out.println(((Student)pair.getKey()) .getName()); // works
System.out.println(((Student)pair.getValue()).getName());//run time error




What do we really want out of an Association?

e We'd like to be able to store two objects of a particular type in our

Association
e We always know what type an object is when we store it
e We always told Java “I want an array of ints” (or something)

e Can we do the same for Associations? “I want an Association between a
String and a String”

e Then methods like getValue (key) will return an object of the particular type
we want!



Generics



Generics

A way to create a general class that allows us to fill in the type

We tell Java what kind of Association (etc.) we want

Can use multiple kinds of Association for various use cases

But, the underlying code logic remains the same!!



A Generic Association

public class Association<K,V> {
protected K theKey;
protected V theValue;
//pre: key != null
public Association (K key, V value) {
theKey = key;
theValue = value;
}
public K getKey() {return theKey;}
public V getValue() {return theValue;}
public V setValue(V value) {
V old = theValue;
theValue = value;
return old;




Using a Generic Association

e Every time we use the word Association, we use angle brackets to denote the
type of the key and the type of the value

e every time you write Association, you should write the type in angle brackets



A Note on Generics

Can’t use primitive types with generics in Java

Instead, need to use the object equivalent of each primitive type: Integer,

Character, Boolean, etc

An Association that associates an integer with another integer would be

Association<Integer, Integer>

To be clear: can't do Association<int, int>. But they do exactly the same
thing!

(Java handles casting between int and Integer for you.)



Back to Dictionaries

So: we can store a key-value pair using an association

How do we store all key-value pairs?

Could use an array, but those are not great
e Right away: can't resize!

¢ Can be annoying to use

It would be really nice if there was an array-like class that was resizeable and
had some useful methods



Vectors




Note on Vectors

e We'll focus on structureb, the code that comes with the textbook

e You need to place it on the machines you code with this semester. Instructions
linked from the lab assignment page; let us know in lab if you have issues

e Java has a built-in, very similar, Vector class (from java.util.Vector). Don't
use this in this class! Use the structureb version instead.



Vectors

An OOP version of arrays

Don’t need to know the size up front

Come with other useful methods:

e Check if an item exists in the Vector
e “Insert” an item in the middle of the Vector

Implemented with a Java class that we can all read



Vectors

e API can be found in javadocs (linked from lectures page, and here:
http://wuw.cs.williams.edu/~bailey/JavaStructures/doc/structures/
structureb/Vector.html

e Highlights:
e get(int) and set(int, E) are equivalent to []
e size() instead of .length

e Extra stuff like add(int, E) to add an element at a location (shifting
remaining elements down), contains (E) to check if the Vector contains a
given element

e and toString() (finally!)


http://www.cs.williams.edu/~bailey/JavaStructures/doc/structure5/structure5/Vector.html
http://www.cs.williams.edu/~bailey/JavaStructures/doc/structure5/structure5/Vector.html

Vector back end

We'll talk about how to implement a Vector next class. Let’s focus on using
them for now.

Vectors use generics! Always specify the type of items in your Vector every
time you write Vector

So a vector of ints would be of type Vector<Integer>

Basic idea: can access specific elements using get (int) and set (int,E)



Quick Vector Example

import structureb.x*;
public class UseVector{
public static void main(String[] args) {

Vector<Integer> newVector = new Vector<Integer>();
newVector.add(1);
newVector.add(2);
newVector.set (1, 4);
System.out.println(newVector);




Creating a Dictionary<K,V>

e How can we store a dictionary? Specifically, with keys of type K and values of
type V. So a Dictionary<K, V>

e Each key-value pair is stored in an Association<K,V>

e All of the pairs are stored in a vector. What is the type of item stored in the
vector?

e Each item in the vector is of type Association<K,V>

e So we're looking for a Vector< Association<K,V> >

o Let’s look quickly at how to implement a (very simple, with many missing
methods) Dictionary<K,V>. We'll come back to this on Monday.



Count Word Frequencies



Let’s Solve a Problem Together!

e User inputs a sequence of words
e We want to keep track of how many times each word appears

e Let’s plan this out
e What data structure do we want to use?

e What does out data structure need to store?

e What operations do we need to support?
e We want to keep track of, for a given word, how many times it appears
e Sounds like each pair is a Association<String, Integer>

e Store all pairs in a Vector< Association<String, Integer> >



Keeping track of word frequency counts

e What happens when a new word comes in?

¢ Depends on if it's stored already or not

e If it's stored, increment the relevant count

e Otherwise, add a new association with count 1
e How can we print things out when we're done?

e Loop through the Vector, printing each item



Let’s look at the code!




	Dictionaries
	Generics
	Vectors
	Count Word Frequencies

