Dijkstra's Shortest Path Algorithm

Instructors: Sam McCauley and Dan Barowy
May 13, 2022

Admin

- Final: Sunday, May 22, 9:30 AM, in Physics 203
- Lab 8 back later today
- If you think you want to use lab 9 for resubmission let me know. (Can’t use lab 18-mentioned in syllabus)
- "Practice exam" (really just sample exam questions) posted on handouts page. Solutions today or tomorrow
- All practice quizzes also on handouts page!
- Any questions?

Heaps and Priority Queues

Heap vs priority queue

- Priority queue is the interface

Heap vs priority queue

- Priority queue is the interface
- Heap is the specific implementation

Heap vs priority queue

- Priority queue is the interface
- Heap is the specific implementation
- Like Map vs Hashtable. There are other ways to implement a Map; similarly, there are other ways to implement a priority queue

Summary

- In short: heaps are much simpler and have much better constants

Summary

- In short: heaps are much simpler and have much better constants
- Extremely common in practice!

Summary

- In short: heaps are much simpler and have much better constants
- Extremely common in practice!
- HeapSort is one of the most common sorting methods, especially if you want $O(n \log n)$ guaranteed worst-case running time

Summary

- In short: heaps are much simpler and have much better constants
- Extremely common in practice!
- HeapSort is one of the most common sorting methods, especially if you want $O(n \log n)$ guaranteed worst-case running time
- We saw min heaps. Can get a "max heap" by flipping the requirement: the root element must be largest in the heap. Then can get good removeMax performance

Dijkstra's Algorithm

Shortest Path

- Goal: given a graph $G=(V, E)$ and a vertex v in V, find the shortest path from v to all vertices in V

Shortest Path

- Goal: given a graph $G=(V, E)$ and a vertex v in V, find the shortest path from v to all vertices in V
- (It turns out: to find the shortest path from v to u, we may need to search the entire graph, find the shortest path to all other vertices)

Shortest Path

- Goal: given a graph $G=(V, E)$ and a vertex v in V, find the shortest path from v to all vertices in V
- (It turns out: to find the shortest path from v to u, we may need to search the entire graph, find the shortest path to all other vertices)
- Assume all edges have positive numbers as a label

Shortest Path

- Goal: given a graph $G=(V, E)$ and a vertex v in V, find the shortest path from v to all vertices in V
- (It turns out: to find the shortest path from v to u, we may need to search the entire graph, find the shortest path to all other vertices)
- Assume all edges have positive numbers as a label
- Where to start?

Base Case

- Given v, is there any vertex in G where we can find the shortest path?

Base Case

- Given v, is there any vertex in G where we can find the shortest path?
- Sure: the shortest path to v has length θ. (Why?)

Base Case

- Given v, is there any vertex in G where we can find the shortest path?
- Sure: the shortest path to v has length θ. (Why?)
- Where do we go from here? Can we find the shortest path to any other vertex?

Short Proof For Intuition

- To Prove: The closest vertex to v is a neighbor of v.

Short Proof For Intuition

- To Prove: The closest vertex to v is a neighbor of v.
- Consider the shortest path from v to a vertex u that is not a neighbor of v :

$$
v, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, u
$$

This path has length $\sum_{i} e_{i}>e_{1}$. Then v_{1} is closer to v than u is.

Short Proof For Intuition

- To Prove: The closest vertex to v is a neighbor of v.
- Consider the shortest path from v to a vertex u that is not a neighbor of v :

$$
v, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, u
$$

This path has length $\sum_{i} e_{i}>e_{1}$. Then v_{1} is closer to v than u is.

- So the shortest path to any other vertex is one of the neighbors.

Short Proof For Intuition

- To Prove: The closest vertex to v is a neighbor of v.
- Consider the shortest path from v to a vertex u that is not a neighbor of v :

$$
v, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, u
$$

This path has length $\sum_{i} e_{i}>e_{1}$. Then v_{1} is closer to v than u is.

- So the shortest path to any other vertex is one of the neighbors.
- Idea: adding more edges only makes the path longer

Growing the Shortest Paths

- Let's say we have the shortest path to some collection of vertices in the graph

Growing the Shortest Paths

- Let's say we have the shortest path to some collection of vertices in the graph
- We'll mark these vertices as visited

Growing the Shortest Paths

- Let's say we have the shortest path to some collection of vertices in the graph
- We'll mark these vertices as visited
- Can we find the shortest path to some other vertex?

Growing the Shortest Paths

- Let's say we have the shortest path to some collection of vertices in the graph
- We'll mark these vertices as visited
- Can we find the shortest path to some other vertex?
- Idea: must be a neighbor of one of the vertices we've already visited

Keeping Track of the State

- What do we need to keep track of?

Keeping Track of the State

- What do we need to keep track of?
- All vertices that we have the shortest path for

Keeping Track of the State

- What do we need to keep track of?
- All vertices that we have the shortest path for
- And their unexplored incident edges. (Need to keep finding some neighbor of a visited vertex.)

Keeping Track of the State

- What do we need to keep track of?
- All vertices that we have the shortest path for
- And their unexplored incident edges. (Need to keep finding some neighbor of a visited vertex.)
- What do we do when we find the shortest path to a vertex?

Keeping Track of the State

- What do we need to keep track of?
- All vertices that we have the shortest path for
- And their unexplored incident edges. (Need to keep finding some neighbor of a visited vertex.)
- What do we do when we find the shortest path to a vertex?
- As we said: mark it as visited

Keeping Track of the State

- What do we need to keep track of?
- All vertices that we have the shortest path for
- And their unexplored incident edges. (Need to keep finding some neighbor of a visited vertex.)
- What do we do when we find the shortest path to a vertex?
- As we said: mark it as visited
- Also need to add its incident edges to the list of edges

Keeping Track of the State

- What do we need to keep track of?
- All vertices that we have the shortest path for
- And their unexplored incident edges. (Need to keep finding some neighbor of a visited vertex.)
- What do we do when we find the shortest path to a vertex?
- As we said: mark it as visited
- Also need to add its incident edges to the list of edges
- Add them to a priority queue; priority based on the total length of the path: length of the path to this vertex, plus the length of the outgoing edge

Visualizing Dijkstra's Algorithm

- Keep track of visited vertices, and their incident edges (that we haven't explored)

Visualizing Dijkstra's Algorithm

- Keep track of visited vertices, and their incident edges (that we haven't explored)
- Start by marking v as visited, and adding its incident edges to the priority queue

Visualizing Dijkstra's Algorithm

- Keep track of visited vertices, and their incident edges (that we haven't explored)
- Start by marking v as visited, and adding its incident edges to the priority queue
- Each time step:

Visualizing Dijkstra's Algorithm

- Keep track of visited vertices, and their incident edges (that we haven't explored)
- Start by marking v as visited, and adding its incident edges to the priority queue
- Each time step:
- Remove an edge from the priority queue; if other vertex is unvisited, visit it and add its incident edges to the priority queue

Visualizing Dijkstra's Algorithm

- Keep track of visited vertices, and their incident edges (that we haven't explored)
- Start by marking v as visited, and adding its incident edges to the priority queue
- Each time step:
- Remove an edge from the priority queue; if other vertex is unvisited, visit it and add its incident edges to the priority queue
- Let's see an example of how Dijkstra's runs

Visualizing Dijkstra's Algorithm

- Keep track of visited vertices, and their incident edges (that we haven't explored)
- Start by marking v as visited, and adding its incident edges to the priority queue
- Each time step:
- Remove an edge from the priority queue; if other vertex is unvisited, visit it and add its incident edges to the priority queue
- Let's see an example of how Dijkstra's runs
- Now, let's look at the actual code

Dijkstra's Analysis

- Graph with n vertices and m edges

Dijkstra's Analysis

- Graph with n vertices and m edges
- Visit each vertex once. Each time we visit a vertex takes O(1) time. So in total, visiting vertices is $O(n)$ time.

Dijkstra's Analysis

- Graph with n vertices and m edges
- Visit each vertex once. Each time we visit a vertex takes O(1) time. So in total, visiting vertices is $O(n)$ time.
- Each edge is added to the priority queue at most once. That means the priority queue has size at most m. Therefore, adding or removing an edge is $O(\log m)$. Totalling over all edges is $O(m \log m)$.

Dijkstra's Analysis

- Graph with n vertices and m edges
- Visit each vertex once. Each time we visit a vertex takes O(1) time. So in total, visiting vertices is $O(n)$ time.
- Each edge is added to the priority queue at most once. That means the priority queue has size at most m. Therefore, adding or removing an edge is $O(\log m)$. Totalling over all edges is $O(m \log m)$.
- Summing, Dijkstra's algorithm takes $O(n+m \log m)$ time. Since $m>n-1$ in a connected graph, this is often written $O(m \log m)$.

Dijkstra's Analysis

- Graph with n vertices and m edges
- Visit each vertex once. Each time we visit a vertex takes O(1) time. So in total, visiting vertices is $O(n)$ time.
- Each edge is added to the priority queue at most once. That means the priority queue has size at most m. Therefore, adding or removing an edge is $O(\log m)$. Totalling over all edges is $O(m \log m)$.
- Summing, Dijkstra's algorithm takes $O(n+m \log m)$ time. Since $m>n-1$ in a connected graph, this is often written $O(m \log m)$.
- Dijkstra's demo!

Review!

Balanced Binary Search Trees

- What you should know:

Balanced Binary Search Trees

- What you should know:
- Difference between a BST and a BBST

Balanced Binary Search Trees

- What you should know:
- Difference between a BST and a BBST
- How to add to a binary search tree; how to search in a binary search tree

Balanced Binary Search Trees

- What you should know:
- Difference between a BST and a BBST
- How to add to a binary search tree; how to search in a binary search tree
- Balanced binary search trees maintain height $O(\log n)$

Balanced Binary Search Trees

- What you should know:
- Difference between a BST and a BBST
- How to add to a binary search tree; how to search in a binary search tree
- Balanced binary search trees maintain height $O(\log n)$
- AVL trees use rotations to maintain balance.

Balanced Binary Search Trees

- What you should know:
- Difference between a BST and a BBST
- How to add to a binary search tree; how to search in a binary search tree
- Balanced binary search trees maintain height $O(\log n)$
- AVL trees use rotations to maintain balance.
- It is possible to delete from a binary search tree, and a balanced binary search tree. (But you don't need to know how!)

Tree Rotation: Rotate Left

This rotation is on the orange nodes (18 and 24); for a left rotation one must be a right child of the other. We rearrange the children of these nodes (in blue).

Tree Rotation: Rotate Right

This rotation is on the orange nodes (18 and 24); for a left rotation one must be a right child of the other. We rearrange the children of these nodes (in blue).

Last Week's Practice Quiz

Any Other Questions?

Wrapping Up CSCI 136

What we Learned

- Lots of data structures:

What we Learned

- Lots of data structures:
- Linear structures like vectors, linked lists

What we Learned

- Lots of data structures:
- Linear structures like vectors, linked lists
- Structures for efficiency like balanced binary search trees, dictionaries, and priority queues

What we Learned

- Lots of data structures:
- Linear structures like vectors, linked lists
- Structures for efficiency like balanced binary search trees, dictionaries, and priority queues
- Structures to store relationships like trees and graphs

What we Learned

- Lots of data structures:
- Linear structures like vectors, linked lists
- Structures for efficiency like balanced binary search trees, dictionaries, and priority queues
- Structures to store relationships like trees and graphs
- Java!

What we Learned

- Lots of data structures:
- Linear structures like vectors, linked lists
- Structures for efficiency like balanced binary search trees, dictionaries, and priority queues
- Structures to store relationships like trees and graphs
- Java!
- Useful programming language

What we Learned

- Lots of data structures:
- Linear structures like vectors, linked lists
- Structures for efficiency like balanced binary search trees, dictionaries, and priority queues
- Structures to store relationships like trees and graphs
- Java!
- Useful programming language
- Object oriented programming, inheritance, formal commenting

What we Learned

- Lots of data structures:
- Linear structures like vectors, linked lists
- Structures for efficiency like balanced binary search trees, dictionaries, and priority queues
- Structures to store relationships like trees and graphs
- Java!
- Useful programming language
- Object oriented programming, inheritance, formal commenting
- Breaking down problems into smaller pieces

What we Learned

- Lots of data structures:
- Linear structures like vectors, linked lists
- Structures for efficiency like balanced binary search trees, dictionaries, and priority queues
- Structures to store relationships like trees and graphs
- Java!
- Useful programming language
- Object oriented programming, inheritance, formal commenting
- Breaking down problems into smaller pieces
- Induction, recursion

What we Learned

- Lots of data structures:
- Linear structures like vectors, linked lists
- Structures for efficiency like balanced binary search trees, dictionaries, and priority queues
- Structures to store relationships like trees and graphs
- Java!
- Useful programming language
- Object oriented programming, inheritance, formal commenting
- Breaking down problems into smaller pieces
- Induction, recursion
- Proofs

What we Learned

- Lots of data structures:
- Linear structures like vectors, linked lists
- Structures for efficiency like balanced binary search trees, dictionaries, and priority queues
- Structures to store relationships like trees and graphs
- Java!
- Useful programming language
- Object oriented programming, inheritance, formal commenting
- Breaking down problems into smaller pieces
- Induction, recursion
- Proofs
- How can we be sure that our methodology is correct?

SCS Forms

