
Dijkstra’s Shortest Path
Algorithm

Instructors: Sam McCauley and Dan Barowy

May 13, 2022



Admin

• Final: Sunday, May 22, 9:30 AM, in Physics 203

• Lab 8 back later today

• If you think you want to use lab 9 for resubmission let me know. (Can’t use lab
10—mentioned in syllabus)

• “Practice exam” (really just sample exam questions) posted on handouts page.

Solutions today or tomorrow

• All practice quizzes also on handouts page!

• Any questions?



Heaps and Priority Queues



Heap vs priority queue

• Priority queue is the interface

• Heap is the specific implementation

• Like Map vs Hashtable. There are other ways to implement a Map; similarly,

there are other ways to implement a priority queue



Heap vs priority queue

• Priority queue is the interface

• Heap is the specific implementation

• Like Map vs Hashtable. There are other ways to implement a Map; similarly,

there are other ways to implement a priority queue



Heap vs priority queue

• Priority queue is the interface

• Heap is the specific implementation

• Like Map vs Hashtable. There are other ways to implement a Map; similarly,

there are other ways to implement a priority queue



Summary

• In short: heaps are much simpler and have much better constants

• Extremely common in practice!

• HeapSort is one of the most common sorting methods, especially if you want

O(n log n) guaranteed worst-case running time

• We saw min heaps. Can get a “max heap” by flipping the requirement: the root

element must be largest in the heap. Then can get good removeMax

performance



Summary

• In short: heaps are much simpler and have much better constants

• Extremely common in practice!

• HeapSort is one of the most common sorting methods, especially if you want

O(n log n) guaranteed worst-case running time

• We saw min heaps. Can get a “max heap” by flipping the requirement: the root

element must be largest in the heap. Then can get good removeMax

performance



Summary

• In short: heaps are much simpler and have much better constants

• Extremely common in practice!

• HeapSort is one of the most common sorting methods, especially if you want

O(n log n) guaranteed worst-case running time

• We saw min heaps. Can get a “max heap” by flipping the requirement: the root

element must be largest in the heap. Then can get good removeMax

performance



Summary

• In short: heaps are much simpler and have much better constants

• Extremely common in practice!

• HeapSort is one of the most common sorting methods, especially if you want

O(n log n) guaranteed worst-case running time

• We saw min heaps. Can get a “max heap” by flipping the requirement: the root

element must be largest in the heap. Then can get good removeMax

performance



Dijkstra’s Algorithm



Shortest Path

• Goal: given a graph G = (V,E) and a vertex v in V , find the shortest path from

v to all vertices in V

• (It turns out: to find the shortest path from v to u, we may need to search the

entire graph, find the shortest path to all other vertices)

• Assume all edges have positive numbers as a label

• Where to start?



Shortest Path

• Goal: given a graph G = (V,E) and a vertex v in V , find the shortest path from

v to all vertices in V

• (It turns out: to find the shortest path from v to u, we may need to search the

entire graph, find the shortest path to all other vertices)

• Assume all edges have positive numbers as a label

• Where to start?



Shortest Path

• Goal: given a graph G = (V,E) and a vertex v in V , find the shortest path from

v to all vertices in V

• (It turns out: to find the shortest path from v to u, we may need to search the

entire graph, find the shortest path to all other vertices)

• Assume all edges have positive numbers as a label

• Where to start?



Shortest Path

• Goal: given a graph G = (V,E) and a vertex v in V , find the shortest path from

v to all vertices in V

• (It turns out: to find the shortest path from v to u, we may need to search the

entire graph, find the shortest path to all other vertices)

• Assume all edges have positive numbers as a label

• Where to start?



Base Case

• Given v, is there any vertex in G where we can find the shortest path?

• Sure: the shortest path to v has length 0. (Why?)

• Where do we go from here? Can we find the shortest path to any other vertex?



Base Case

• Given v, is there any vertex in G where we can find the shortest path?

• Sure: the shortest path to v has length 0. (Why?)

• Where do we go from here? Can we find the shortest path to any other vertex?



Base Case

• Given v, is there any vertex in G where we can find the shortest path?

• Sure: the shortest path to v has length 0. (Why?)

• Where do we go from here? Can we find the shortest path to any other vertex?



Short Proof For Intuition

• To Prove: The closest vertex to v is a neighbor of v.

• Consider the shortest path from v to a vertex u that is not a neighbor of v:

v, e1, v1, e2, v2, . . . , u

This path has length
∑

i ei > e1. Then v1 is closer to v than u is.

• So the shortest path to any other vertex is one of the neighbors.

• Idea: adding more edges only makes the path longer



Short Proof For Intuition

• To Prove: The closest vertex to v is a neighbor of v.

• Consider the shortest path from v to a vertex u that is not a neighbor of v:

v, e1, v1, e2, v2, . . . , u

This path has length
∑

i ei > e1. Then v1 is closer to v than u is.

• So the shortest path to any other vertex is one of the neighbors.

• Idea: adding more edges only makes the path longer



Short Proof For Intuition

• To Prove: The closest vertex to v is a neighbor of v.

• Consider the shortest path from v to a vertex u that is not a neighbor of v:

v, e1, v1, e2, v2, . . . , u

This path has length
∑

i ei > e1. Then v1 is closer to v than u is.

• So the shortest path to any other vertex is one of the neighbors.

• Idea: adding more edges only makes the path longer



Short Proof For Intuition

• To Prove: The closest vertex to v is a neighbor of v.

• Consider the shortest path from v to a vertex u that is not a neighbor of v:

v, e1, v1, e2, v2, . . . , u

This path has length
∑

i ei > e1. Then v1 is closer to v than u is.

• So the shortest path to any other vertex is one of the neighbors.

• Idea: adding more edges only makes the path longer



Growing the Shortest Paths

• Let’s say we have the shortest path to some collection of vertices in the graph

• We’ll mark these vertices as visited

• Can we find the shortest path to some other vertex?

• Idea: must be a neighbor of one of the vertices we’ve already visited



Growing the Shortest Paths

• Let’s say we have the shortest path to some collection of vertices in the graph

• We’ll mark these vertices as visited

• Can we find the shortest path to some other vertex?

• Idea: must be a neighbor of one of the vertices we’ve already visited



Growing the Shortest Paths

• Let’s say we have the shortest path to some collection of vertices in the graph

• We’ll mark these vertices as visited

• Can we find the shortest path to some other vertex?

• Idea: must be a neighbor of one of the vertices we’ve already visited



Growing the Shortest Paths

• Let’s say we have the shortest path to some collection of vertices in the graph

• We’ll mark these vertices as visited

• Can we find the shortest path to some other vertex?

• Idea: must be a neighbor of one of the vertices we’ve already visited



Keeping Track of the State

• What do we need to keep track of?

• All vertices that we have the shortest path for

• And their unexplored incident edges. (Need to keep finding some neighbor of a
visited vertex.)

• What do we do when we find the shortest path to a vertex?

• As we said: mark it as visited

• Also need to add its incident edges to the list of edges

• Add them to a priority queue; priority based on the total length of the path:
length of the path to this vertex, plus the length of the outgoing edge



Keeping Track of the State

• What do we need to keep track of?

• All vertices that we have the shortest path for

• And their unexplored incident edges. (Need to keep finding some neighbor of a
visited vertex.)

• What do we do when we find the shortest path to a vertex?

• As we said: mark it as visited

• Also need to add its incident edges to the list of edges

• Add them to a priority queue; priority based on the total length of the path:
length of the path to this vertex, plus the length of the outgoing edge



Keeping Track of the State

• What do we need to keep track of?

• All vertices that we have the shortest path for

• And their unexplored incident edges. (Need to keep finding some neighbor of a
visited vertex.)

• What do we do when we find the shortest path to a vertex?

• As we said: mark it as visited

• Also need to add its incident edges to the list of edges

• Add them to a priority queue; priority based on the total length of the path:
length of the path to this vertex, plus the length of the outgoing edge



Keeping Track of the State

• What do we need to keep track of?

• All vertices that we have the shortest path for

• And their unexplored incident edges. (Need to keep finding some neighbor of a
visited vertex.)

• What do we do when we find the shortest path to a vertex?

• As we said: mark it as visited

• Also need to add its incident edges to the list of edges

• Add them to a priority queue; priority based on the total length of the path:
length of the path to this vertex, plus the length of the outgoing edge



Keeping Track of the State

• What do we need to keep track of?

• All vertices that we have the shortest path for

• And their unexplored incident edges. (Need to keep finding some neighbor of a
visited vertex.)

• What do we do when we find the shortest path to a vertex?

• As we said: mark it as visited

• Also need to add its incident edges to the list of edges

• Add them to a priority queue; priority based on the total length of the path:
length of the path to this vertex, plus the length of the outgoing edge



Keeping Track of the State

• What do we need to keep track of?

• All vertices that we have the shortest path for

• And their unexplored incident edges. (Need to keep finding some neighbor of a
visited vertex.)

• What do we do when we find the shortest path to a vertex?

• As we said: mark it as visited

• Also need to add its incident edges to the list of edges

• Add them to a priority queue; priority based on the total length of the path:
length of the path to this vertex, plus the length of the outgoing edge



Keeping Track of the State

• What do we need to keep track of?

• All vertices that we have the shortest path for

• And their unexplored incident edges. (Need to keep finding some neighbor of a
visited vertex.)

• What do we do when we find the shortest path to a vertex?

• As we said: mark it as visited

• Also need to add its incident edges to the list of edges

• Add them to a priority queue; priority based on the total length of the path:
length of the path to this vertex, plus the length of the outgoing edge



Visualizing Dijkstra’s Algorithm

• Keep track of visited vertices, and their incident edges (that we haven’t

explored)

• Start by marking v as visited, and adding its incident edges to the priority

queue

• Each time step:

• Remove an edge from the priority queue; if other vertex is unvisited, visit it and
add its incident edges to the priority queue

• Let’s see an example of how Dijkstra’s runs

• Now, let’s look at the actual code



Visualizing Dijkstra’s Algorithm

• Keep track of visited vertices, and their incident edges (that we haven’t

explored)

• Start by marking v as visited, and adding its incident edges to the priority

queue

• Each time step:

• Remove an edge from the priority queue; if other vertex is unvisited, visit it and
add its incident edges to the priority queue

• Let’s see an example of how Dijkstra’s runs

• Now, let’s look at the actual code



Visualizing Dijkstra’s Algorithm

• Keep track of visited vertices, and their incident edges (that we haven’t

explored)

• Start by marking v as visited, and adding its incident edges to the priority

queue

• Each time step:

• Remove an edge from the priority queue; if other vertex is unvisited, visit it and
add its incident edges to the priority queue

• Let’s see an example of how Dijkstra’s runs

• Now, let’s look at the actual code



Visualizing Dijkstra’s Algorithm

• Keep track of visited vertices, and their incident edges (that we haven’t

explored)

• Start by marking v as visited, and adding its incident edges to the priority

queue

• Each time step:

• Remove an edge from the priority queue; if other vertex is unvisited, visit it and
add its incident edges to the priority queue

• Let’s see an example of how Dijkstra’s runs

• Now, let’s look at the actual code



Visualizing Dijkstra’s Algorithm

• Keep track of visited vertices, and their incident edges (that we haven’t

explored)

• Start by marking v as visited, and adding its incident edges to the priority

queue

• Each time step:

• Remove an edge from the priority queue; if other vertex is unvisited, visit it and
add its incident edges to the priority queue

• Let’s see an example of how Dijkstra’s runs

• Now, let’s look at the actual code



Visualizing Dijkstra’s Algorithm

• Keep track of visited vertices, and their incident edges (that we haven’t

explored)

• Start by marking v as visited, and adding its incident edges to the priority

queue

• Each time step:

• Remove an edge from the priority queue; if other vertex is unvisited, visit it and
add its incident edges to the priority queue

• Let’s see an example of how Dijkstra’s runs

• Now, let’s look at the actual code



Dijkstra’s Analysis

• Graph with n vertices and m edges

• Visit each vertex once. Each time we visit a vertex takes O(1) time. So in total,

visiting vertices is O(n) time.

• Each edge is added to the priority queue at most once. That means the

priority queue has size at most m. Therefore, adding or removing an edge is

O(logm). Totalling over all edges is O(m logm).

• Summing, Dijkstra’s algorithm takes O(n+m logm) time. Since m > n− 1 in a

connected graph, this is often written O(m logm).

• Dijkstra’s demo!



Dijkstra’s Analysis

• Graph with n vertices and m edges

• Visit each vertex once. Each time we visit a vertex takes O(1) time. So in total,

visiting vertices is O(n) time.

• Each edge is added to the priority queue at most once. That means the

priority queue has size at most m. Therefore, adding or removing an edge is

O(logm). Totalling over all edges is O(m logm).

• Summing, Dijkstra’s algorithm takes O(n+m logm) time. Since m > n− 1 in a

connected graph, this is often written O(m logm).

• Dijkstra’s demo!



Dijkstra’s Analysis

• Graph with n vertices and m edges

• Visit each vertex once. Each time we visit a vertex takes O(1) time. So in total,

visiting vertices is O(n) time.

• Each edge is added to the priority queue at most once. That means the

priority queue has size at most m. Therefore, adding or removing an edge is

O(logm). Totalling over all edges is O(m logm).

• Summing, Dijkstra’s algorithm takes O(n+m logm) time. Since m > n− 1 in a

connected graph, this is often written O(m logm).

• Dijkstra’s demo!



Dijkstra’s Analysis

• Graph with n vertices and m edges

• Visit each vertex once. Each time we visit a vertex takes O(1) time. So in total,

visiting vertices is O(n) time.

• Each edge is added to the priority queue at most once. That means the

priority queue has size at most m. Therefore, adding or removing an edge is

O(logm). Totalling over all edges is O(m logm).

• Summing, Dijkstra’s algorithm takes O(n+m logm) time. Since m > n− 1 in a

connected graph, this is often written O(m logm).

• Dijkstra’s demo!



Dijkstra’s Analysis

• Graph with n vertices and m edges

• Visit each vertex once. Each time we visit a vertex takes O(1) time. So in total,

visiting vertices is O(n) time.

• Each edge is added to the priority queue at most once. That means the

priority queue has size at most m. Therefore, adding or removing an edge is

O(logm). Totalling over all edges is O(m logm).

• Summing, Dijkstra’s algorithm takes O(n+m logm) time. Since m > n− 1 in a

connected graph, this is often written O(m logm).

• Dijkstra’s demo!



Review!



Balanced Binary Search Trees

• What you should know:

• Difference between a BST and a BBST

• How to add to a binary search tree; how to search in a binary search tree

• Balanced binary search trees maintain height O(log n)

• AVL trees use rotations to maintain balance.

• It is possible to delete from a binary search tree, and a balanced binary search
tree. (But you don’t need to know how!)



Balanced Binary Search Trees

• What you should know:

• Difference between a BST and a BBST

• How to add to a binary search tree; how to search in a binary search tree

• Balanced binary search trees maintain height O(log n)

• AVL trees use rotations to maintain balance.

• It is possible to delete from a binary search tree, and a balanced binary search
tree. (But you don’t need to know how!)



Balanced Binary Search Trees

• What you should know:

• Difference between a BST and a BBST

• How to add to a binary search tree; how to search in a binary search tree

• Balanced binary search trees maintain height O(log n)

• AVL trees use rotations to maintain balance.

• It is possible to delete from a binary search tree, and a balanced binary search
tree. (But you don’t need to know how!)



Balanced Binary Search Trees

• What you should know:

• Difference between a BST and a BBST

• How to add to a binary search tree; how to search in a binary search tree

• Balanced binary search trees maintain height O(log n)

• AVL trees use rotations to maintain balance.

• It is possible to delete from a binary search tree, and a balanced binary search
tree. (But you don’t need to know how!)



Balanced Binary Search Trees

• What you should know:

• Difference between a BST and a BBST

• How to add to a binary search tree; how to search in a binary search tree

• Balanced binary search trees maintain height O(log n)

• AVL trees use rotations to maintain balance.

• It is possible to delete from a binary search tree, and a balanced binary search
tree. (But you don’t need to know how!)



Balanced Binary Search Trees

• What you should know:

• Difference between a BST and a BBST

• How to add to a binary search tree; how to search in a binary search tree

• Balanced binary search trees maintain height O(log n)

• AVL trees use rotations to maintain balance.

• It is possible to delete from a binary search tree, and a balanced binary search
tree. (But you don’t need to know how!)



Tree Rotation: Rotate Left

18

9

5 12

24

22

23

30

29 35

24

18

9

5 12

22

23

30

29 35

This rotation is on the orange nodes (18 and 24); for a left rotation one must be a

right child of the other. We rearrange the children of these nodes (in blue).



Tree Rotation: Rotate Right

24

18

9

5 12

22

23

30

29 35

18

9

5 12

24

22

23

30

29 35

This rotation is on the orange nodes (18 and 24); for a left rotation one must be a

right child of the other. We rearrange the children of these nodes (in blue).



Last Week’s Practice Quiz



Any Other Questions?



Wrapping Up CSCI 136



What we Learned

• Lots of data structures:

• Linear structures like vectors, linked lists

• Structures for efficiency like balanced binary search trees, dictionaries, and
priority queues

• Structures to store relationships like trees and graphs

• Java!

• Useful programming language

• Object oriented programming, inheritance, formal commenting

• Breaking down problems into smaller pieces

• Induction, recursion

• Proofs

• How can we be sure that our methodology is correct?



What we Learned

• Lots of data structures:

• Linear structures like vectors, linked lists

• Structures for efficiency like balanced binary search trees, dictionaries, and
priority queues

• Structures to store relationships like trees and graphs

• Java!

• Useful programming language

• Object oriented programming, inheritance, formal commenting

• Breaking down problems into smaller pieces

• Induction, recursion

• Proofs

• How can we be sure that our methodology is correct?



What we Learned

• Lots of data structures:

• Linear structures like vectors, linked lists

• Structures for efficiency like balanced binary search trees, dictionaries, and
priority queues

• Structures to store relationships like trees and graphs

• Java!

• Useful programming language

• Object oriented programming, inheritance, formal commenting

• Breaking down problems into smaller pieces

• Induction, recursion

• Proofs

• How can we be sure that our methodology is correct?



What we Learned

• Lots of data structures:

• Linear structures like vectors, linked lists

• Structures for efficiency like balanced binary search trees, dictionaries, and
priority queues

• Structures to store relationships like trees and graphs

• Java!

• Useful programming language

• Object oriented programming, inheritance, formal commenting

• Breaking down problems into smaller pieces

• Induction, recursion

• Proofs

• How can we be sure that our methodology is correct?



What we Learned

• Lots of data structures:

• Linear structures like vectors, linked lists

• Structures for efficiency like balanced binary search trees, dictionaries, and
priority queues

• Structures to store relationships like trees and graphs

• Java!

• Useful programming language

• Object oriented programming, inheritance, formal commenting

• Breaking down problems into smaller pieces

• Induction, recursion

• Proofs

• How can we be sure that our methodology is correct?



What we Learned

• Lots of data structures:

• Linear structures like vectors, linked lists

• Structures for efficiency like balanced binary search trees, dictionaries, and
priority queues

• Structures to store relationships like trees and graphs

• Java!

• Useful programming language

• Object oriented programming, inheritance, formal commenting

• Breaking down problems into smaller pieces

• Induction, recursion

• Proofs

• How can we be sure that our methodology is correct?



What we Learned

• Lots of data structures:

• Linear structures like vectors, linked lists

• Structures for efficiency like balanced binary search trees, dictionaries, and
priority queues

• Structures to store relationships like trees and graphs

• Java!

• Useful programming language

• Object oriented programming, inheritance, formal commenting

• Breaking down problems into smaller pieces

• Induction, recursion

• Proofs

• How can we be sure that our methodology is correct?



What we Learned

• Lots of data structures:

• Linear structures like vectors, linked lists

• Structures for efficiency like balanced binary search trees, dictionaries, and
priority queues

• Structures to store relationships like trees and graphs

• Java!

• Useful programming language

• Object oriented programming, inheritance, formal commenting

• Breaking down problems into smaller pieces

• Induction, recursion

• Proofs

• How can we be sure that our methodology is correct?



What we Learned

• Lots of data structures:

• Linear structures like vectors, linked lists

• Structures for efficiency like balanced binary search trees, dictionaries, and
priority queues

• Structures to store relationships like trees and graphs

• Java!

• Useful programming language

• Object oriented programming, inheritance, formal commenting

• Breaking down problems into smaller pieces

• Induction, recursion

• Proofs

• How can we be sure that our methodology is correct?



What we Learned

• Lots of data structures:

• Linear structures like vectors, linked lists

• Structures for efficiency like balanced binary search trees, dictionaries, and
priority queues

• Structures to store relationships like trees and graphs

• Java!

• Useful programming language

• Object oriented programming, inheritance, formal commenting

• Breaking down problems into smaller pieces

• Induction, recursion

• Proofs

• How can we be sure that our methodology is correct?



What we Learned

• Lots of data structures:

• Linear structures like vectors, linked lists

• Structures for efficiency like balanced binary search trees, dictionaries, and
priority queues

• Structures to store relationships like trees and graphs

• Java!

• Useful programming language

• Object oriented programming, inheritance, formal commenting

• Breaking down problems into smaller pieces

• Induction, recursion

• Proofs

• How can we be sure that our methodology is correct?



SCS Forms


	Heaps and Priority Queues
	Dijkstra's Algorithm
	Review!
	Last Week's Practice Quiz
	Any Other Questions?
	Wrapping Up CSCI 136
	SCS Forms

