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Admin

• Sign up to be a TA! Deadline Friday

• End of the form asks to list professors; pretty much anyone you’ve had is
probably fine

• If you want we can have a brief conversation where I say I’m OK with you putting
my name down

• Lab 8 tomorrow: please read over the lab and create a design document
before your lab

• We’ll actually collect them this week
• Very important to get a head start on the lab

• We’ll briefly discuss course registration Friday

• Any questions?



Tree Iterators



Implementing Tree Iterators

• Goal: implement the traversals above as an iterator

• Can do next() and hasNext() on demand

• Problem: want to get values on demand (should be updated as the tree is
updated)

• Don’t want to traverse the tree, store all tree values, and then dispense them one
by one

• Instead: each call to next() should go to the next node in the tree we want to
output

• Challenge: implementing a recursive traversal piece-by-piece

• To think about: what data structure helps with recursion?



Pre-order traversal
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• Visits the node, then recursively

traverses the left child, then the

right child

• Keep track of the current node

we’re traversing

• What happens when we hit a leaf?

• Could backtrack by following

pointers; might get confusing

• Instead: maintain nodes to visit on

a stack!
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Pre-order traversal

• Stack maintains the non-empty BinaryTree<E> objects that we still need to

traverse

• So next():

• pops the top item off the stack

• Stores its value to be returned

• Pushes its right child onto the stack if nonempty

• Pushes its left child onto the stack if nonempty

• hasNext()?

• Just returns if the stack is empty
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• A little less clear how to keep the stack: want

to output the root only after the left side is

completed; then output the right side

• In other words: want to output the root after

the left child has been completely traversed

• Seems like we want the root at the very

bottom of the stack. We’ll keep it at the

bottom of the stack as we traverse the left

subtree; then when we pop the root off we’ll

output its value and traverse the right child

• Nice idea, but it takes some care. Let’s be a

bit more specific
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so on

• On a call to next():

• pop node from stack; store its value to be returned
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• Push the left child of this right child onto the stack, and its left child, and so on

• hasNext(): return if the stack is nonempty

• Let’s look at the code
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• If you pop a node, and it’s the left child of its parent, push the parent’s right

child (and leftmost descendants) onto the stack
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• Level-order traversal is not recursive!

• How do we keep track of what nodes to visit next?

• Key insight: the order we visit nodes at a given “level” is the same order we

visited their parents

• So the first parents to be visited have the first children that are visited

• . . . Can we use a queue?
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• Let’s look at the code
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• Goal: store items in a tree such that we can implement methods like add()

and contains() efficiently

• Don’t want to traverse the entire tree

• In an OrderedVector we store items in order to allow for efficient binary
search

• Though add() is still slow

• How can we do something similar for trees?
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• All values vr of nodes that are descendants of the right child have values vr > v
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• How can I search for an element

(say 14)?

• Recursively!

• Idea: we can look at a node and

know immediately if the element

we’re searching for is a descendant

of the left child, or of the right child

• Recurse on the appropriate node

• If we find the element, or if we hit

an empty node, we’re done
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• How can I add an element (say 23)?

• Recursively!

• Idea: we can look at a node and know

immediately if the element we’re adding

should be a descendant of the left child,

or of the right child

• Recurse on the appropriate node

• If we hit an empty node, replace it with

the element we want to add



Adding an element to a binary search tree

18

9

5 12

24

22 30

29 35

• How can I add an element (say 23)?

• Recursively!

• Idea: we can look at a node and know

immediately if the element we’re adding

should be a descendant of the left child,

or of the right child

• Recurse on the appropriate node

• If we hit an empty node, replace it with

the element we want to add



Adding an element to a binary search tree

18

9

5 12

24

22 30

29 35

• How can I add an element (say 23)?

• Recursively!

• Idea: we can look at a node and know

immediately if the element we’re adding

should be a descendant of the left child,

or of the right child

• Recurse on the appropriate node

• If we hit an empty node, replace it with

the element we want to add



Adding an element to a binary search tree

18

9

5 12

24

22 30

29 35

• How can I add an element (say 23)?

• Recursively!

• Idea: we can look at a node and know

immediately if the element we’re adding

should be a descendant of the left child,

or of the right child

• Recurse on the appropriate node

• If we hit an empty node, replace it with

the element we want to add



Adding an element to a binary search tree

18

9

5 12

24

22 30

29 35

• How can I add an element (say 23)?

• Recursively!

• Idea: we can look at a node and know

immediately if the element we’re adding

should be a descendant of the left child,

or of the right child

• Recurse on the appropriate node

• If we hit an empty node, replace it with

the element we want to add



Adding an element to a binary search tree

18

9

5 12

24

22

23

30

29 35

• How can I add an element (say 23)?

• Recursively!

• Idea: we can look at a node and know

immediately if the element we’re adding

should be a descendant of the left child,

or of the right child

• Recurse on the appropriate node

• If we hit an empty node, replace it with

the element we want to add



Adding an element to a binary search tree: caveat!

18

9

5 12

24

22 30

29 35

• How can I add something to a BST

that’s already in the tree

• For example: add 9 to this tree

• Idea: first, find the element. Then, find

an empty leaf where the new element

can go

• Rightmost descendant of left child
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Comparing Elements

• Need some kind of way to compare elements

• What are our options?

• Store Comparable items, or use a Comparator

• The structure5 BinarySearchTree<E> assumes comparable items, but also
allows a Comparator to be used...how?
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Natural Comparator

• Let’s say we have an item of type E that implements Comparable<E>

• That means we can already compare items of type E

• But, we want the flexibility to compare them other ways using a

Comparator<E>

• The NaturalComparator<E> implements Comparator<E>, and compares items

using their compareTo() method

• That way, we can write code assuming we always have a comparator; if we

want we can replace it with a different comparator

• Let’s look at the code
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Building up the BST

• The BinaryTree class was recursive

• On the other hand, BinarySearchTree is made up of BinaryTrees

• Allows us to keep track of the number of items, a comparator, etc.

• Now: let’s look at the code to locate an item, or to add it to the tree
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• Idea: we can look at a node and

know immediately if the element

we’re searching for is a descendant

of the left child, or of the right child

• Recurse on the appropriate node

• If we find the element, or if we hit

an empty node, we’re done

• Let’s look at the code
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• Idea: we can look at a node and know

immediately if the element we’re adding

should be a descendant of the left child,

or of the right child

• Recurse on the appropriate node

• If we hit an empty node, replace it with

the element we want to add

• If adding a duplicate element, find

rightmost descendant of left child of

current location



Tree Vocabulary

• Descendant: A node n′ is a descendant of node n if there exists a sequence of

nodes n = n1, n2, . . . , ni = n′ such that for all 1 ≤ j < i, nj is a child of nj+1.

(Ancestor is the opposite)

• Siblings: Two nodes are siblings if they share the same parent

• Subtree: A subset of the nodes in a tree that themselves form a tree (possibly

with a different root node)

• Interior node: a node that is not a leaf
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• Path: the unique shortest sequence of edges between two nodes n1 and n2.

Each successive edge in the path must share one of its nodes with the

previous edge.

• Full Tree: A tree where every leaf has the same depth h, and every internal

node has exactly two children

• Complete Tree: A full tree with 0 or more of the rightmost leaves of depth h

removed
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Binary Search Tree Analysis

• How much time does a call to locate() take?

• Worst case

• Definitely not worse than O(n) (we never look at a node multiple times)

• Is there a tree where it’s actually O(n)? Yes; let’s try to create an example on the
board

• Let’s say we have a tree of height h. How long does a call to locate() take in
terms of h?

• Each time we call the method the height of the node increases by one, so O(h)

• If we have time: how can we prove this by induction?
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Making Binary Search Trees More Efficient

• Goal: ensure that our BST has small height

• What should our goal be for height?

• Complete trees are optimal; what is their height?

• O(log n)

• Can we design our Binary Search Tree so that it maintains height O(log n)?
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