
Binary Search Trees

Instructors: Sam McCauley and Dan Barowy

April 20, 2022



Admin

• Sign up to be a TA! Deadline Friday

• End of the form asks to list professors; pretty much anyone you’ve had is
probably fine

• If you want we can have a brief conversation where I say I’m OK with you putting
my name down

• Lab 8 tomorrow: please read over the lab and create a design document
before your lab

• We’ll actually collect them this week
• Very important to get a head start on the lab

• We’ll briefly discuss course registration Friday

• Any questions?



Tree Iterators



Implementing Tree Iterators

• Goal: implement the traversals above as an iterator

• Can do next() and hasNext() on demand

• Problem: want to get values on demand (should be updated as the tree is
updated)

• Don’t want to traverse the tree, store all tree values, and then dispense them one
by one

• Instead: each call to next() should go to the next node in the tree we want to
output

• Challenge: implementing a recursive traversal piece-by-piece

• To think about: what data structure helps with recursion?



Pre-order traversal

18

9

5 12

24

22 30

29 35

• Visits the node, then recursively

traverses the left child, then the

right child

• Keep track of the current node

we’re traversing

• What happens when we hit a leaf?

• Could backtrack by following

pointers; might get confusing

• Instead: maintain nodes to visit on

a stack!



Pre-order traversal

18

9

5 12

24

22 30

29 35

• Visits the node, then recursively

traverses the left child, then the

right child

• Keep track of the current node

we’re traversing

• What happens when we hit a leaf?

• Could backtrack by following

pointers; might get confusing

• Instead: maintain nodes to visit on

a stack!



Pre-order traversal

18

9

5 12

24

22 30

29 35

• Visits the node, then recursively

traverses the left child, then the

right child

• Keep track of the current node

we’re traversing

• What happens when we hit a leaf?

• Could backtrack by following

pointers; might get confusing

• Instead: maintain nodes to visit on

a stack!



Pre-order traversal

18

9

5 12

24

22 30

29 35

• Visits the node, then recursively

traverses the left child, then the

right child

• Keep track of the current node

we’re traversing

• What happens when we hit a leaf?

• Could backtrack by following

pointers; might get confusing

• Instead: maintain nodes to visit on

a stack!



Pre-order traversal

18

9

5 12

24

22 30

29 35

• Visits the node, then recursively

traverses the left child, then the

right child

• Keep track of the current node

we’re traversing

• What happens when we hit a leaf?

• Could backtrack by following

pointers; might get confusing

• Instead: maintain nodes to visit on

a stack!



Pre-order traversal

• Stack maintains the non-empty BinaryTree<E> objects that we still need to

traverse

• So next():

• pops the top item off the stack

• Stores its value to be returned

• Pushes its right child onto the stack if nonempty

• Pushes its left child onto the stack if nonempty

• hasNext()?

• Just returns if the stack is empty



Pre-order traversal

• Stack maintains the non-empty BinaryTree<E> objects that we still need to

traverse

• So next():

• pops the top item off the stack

• Stores its value to be returned

• Pushes its right child onto the stack if nonempty

• Pushes its left child onto the stack if nonempty

• hasNext()?

• Just returns if the stack is empty



Pre-order traversal

• Stack maintains the non-empty BinaryTree<E> objects that we still need to

traverse

• So next():

• pops the top item off the stack

• Stores its value to be returned

• Pushes its right child onto the stack if nonempty

• Pushes its left child onto the stack if nonempty

• hasNext()?

• Just returns if the stack is empty



Pre-order traversal

• Stack maintains the non-empty BinaryTree<E> objects that we still need to

traverse

• So next():

• pops the top item off the stack

• Stores its value to be returned

• Pushes its right child onto the stack if nonempty

• Pushes its left child onto the stack if nonempty

• hasNext()?

• Just returns if the stack is empty



Pre-order traversal

• Stack maintains the non-empty BinaryTree<E> objects that we still need to

traverse

• So next():

• pops the top item off the stack

• Stores its value to be returned

• Pushes its right child onto the stack if nonempty

• Pushes its left child onto the stack if nonempty

• hasNext()?

• Just returns if the stack is empty



Pre-order traversal

• Stack maintains the non-empty BinaryTree<E> objects that we still need to

traverse

• So next():

• pops the top item off the stack

• Stores its value to be returned

• Pushes its right child onto the stack if nonempty

• Pushes its left child onto the stack if nonempty

• hasNext()?

• Just returns if the stack is empty



Pre-order traversal

• Stack maintains the non-empty BinaryTree<E> objects that we still need to

traverse

• So next():

• pops the top item off the stack

• Stores its value to be returned

• Pushes its right child onto the stack if nonempty

• Pushes its left child onto the stack if nonempty

• hasNext()?

• Just returns if the stack is empty



Pre-order traversal

• Stack maintains the non-empty BinaryTree<E> objects that we still need to

traverse

• So next():

• pops the top item off the stack

• Stores its value to be returned

• Pushes its right child onto the stack if nonempty

• Pushes its left child onto the stack if nonempty

• hasNext()?

• Just returns if the stack is empty



In-order traversal

18

9

5 12

24

22 30

29 35

• A little less clear how to keep the stack: want

to output the root only after the left side is

completed; then output the right side

• In other words: want to output the root after

the left child has been completely traversed

• Seems like we want the root at the very

bottom of the stack. We’ll keep it at the

bottom of the stack as we traverse the left

subtree; then when we pop the root off we’ll

output its value and traverse the right child

• Nice idea, but it takes some care. Let’s be a

bit more specific



In-order traversal

18

9

5 12

24

22 30

29 35

• A little less clear how to keep the stack: want

to output the root only after the left side is

completed; then output the right side

• In other words: want to output the root after

the left child has been completely traversed

• Seems like we want the root at the very

bottom of the stack. We’ll keep it at the

bottom of the stack as we traverse the left

subtree; then when we pop the root off we’ll

output its value and traverse the right child

• Nice idea, but it takes some care. Let’s be a

bit more specific



In-order traversal

18

9

5 12

24

22 30

29 35

• A little less clear how to keep the stack: want

to output the root only after the left side is

completed; then output the right side

• In other words: want to output the root after

the left child has been completely traversed

• Seems like we want the root at the very

bottom of the stack. We’ll keep it at the

bottom of the stack as we traverse the left

subtree; then when we pop the root off we’ll

output its value and traverse the right child

• Nice idea, but it takes some care. Let’s be a

bit more specific



In-order traversal

18

9

5 12

24

22 30

29 35

• A little less clear how to keep the stack: want

to output the root only after the left side is

completed; then output the right side

• In other words: want to output the root after

the left child has been completely traversed

• Seems like we want the root at the very

bottom of the stack. We’ll keep it at the

bottom of the stack as we traverse the left

subtree; then when we pop the root off we’ll

output its value and traverse the right child

• Nice idea, but it takes some care. Let’s be a

bit more specific



In-order traversal

• To begin: push root onto the stack, then push its left child onto the stack, and

so on

• On a call to next():

• pop node from stack; store its value to be returned

• Push its right child onto the stack if nonempty

• Push the left child of this right child onto the stack, and its left child, and so on

• hasNext(): return if the stack is nonempty

• Let’s look at the code



In-order traversal

• To begin: push root onto the stack, then push its left child onto the stack, and

so on

• On a call to next():

• pop node from stack; store its value to be returned

• Push its right child onto the stack if nonempty

• Push the left child of this right child onto the stack, and its left child, and so on

• hasNext(): return if the stack is nonempty

• Let’s look at the code



In-order traversal

• To begin: push root onto the stack, then push its left child onto the stack, and

so on

• On a call to next():

• pop node from stack; store its value to be returned

• Push its right child onto the stack if nonempty

• Push the left child of this right child onto the stack, and its left child, and so on

• hasNext(): return if the stack is nonempty

• Let’s look at the code



In-order traversal

• To begin: push root onto the stack, then push its left child onto the stack, and

so on

• On a call to next():

• pop node from stack; store its value to be returned

• Push its right child onto the stack if nonempty

• Push the left child of this right child onto the stack, and its left child, and so on

• hasNext(): return if the stack is nonempty

• Let’s look at the code



In-order traversal

• To begin: push root onto the stack, then push its left child onto the stack, and

so on

• On a call to next():

• pop node from stack; store its value to be returned

• Push its right child onto the stack if nonempty

• Push the left child of this right child onto the stack, and its left child, and so on

• hasNext(): return if the stack is nonempty

• Let’s look at the code



In-order traversal

• To begin: push root onto the stack, then push its left child onto the stack, and

so on

• On a call to next():

• pop node from stack; store its value to be returned

• Push its right child onto the stack if nonempty

• Push the left child of this right child onto the stack, and its left child, and so on

• hasNext(): return if the stack is nonempty

• Let’s look at the code



In-order traversal

• To begin: push root onto the stack, then push its left child onto the stack, and

so on

• On a call to next():

• pop node from stack; store its value to be returned

• Push its right child onto the stack if nonempty

• Push the left child of this right child onto the stack, and its left child, and so on

• hasNext(): return if the stack is nonempty

• Let’s look at the code



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Stack is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Stack: 18 9 5



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Stack is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Stack: 18 9



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Stack is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Stack: 18 12



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Stack is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Stack: 18



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Stack is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Stack: 24 22



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Stack is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Stack: 24



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Stack is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Stack: 30 29



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Stack is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Stack: 30



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Stack is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Stack: 35



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Stack is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Stack:



In-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Stack is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree



Post-order traversal

• Same idea as in-order traversal

• Output the node when popping from the stack

• If you pop a node, and it’s the left child of its parent, push the parent’s right

child (and leftmost descendants) onto the stack



Post-order traversal

• Same idea as in-order traversal

• Output the node when popping from the stack

• If you pop a node, and it’s the left child of its parent, push the parent’s right

child (and leftmost descendants) onto the stack



Post-order traversal

• Same idea as in-order traversal

• Output the node when popping from the stack

• If you pop a node, and it’s the left child of its parent, push the parent’s right

child (and leftmost descendants) onto the stack



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange.



Level-order traversal

• Level-order traversal is not recursive!

• How do we keep track of what nodes to visit next?

• Key insight: the order we visit nodes at a given “level” is the same order we

visited their parents

• So the first parents to be visited have the first children that are visited

• . . . Can we use a queue?



Level-order traversal

• Level-order traversal is not recursive!

• How do we keep track of what nodes to visit next?

• Key insight: the order we visit nodes at a given “level” is the same order we

visited their parents

• So the first parents to be visited have the first children that are visited

• . . . Can we use a queue?



Level-order traversal

• Level-order traversal is not recursive!

• How do we keep track of what nodes to visit next?

• Key insight: the order we visit nodes at a given “level” is the same order we

visited their parents

• So the first parents to be visited have the first children that are visited

• . . . Can we use a queue?



Level-order traversal

• Level-order traversal is not recursive!

• How do we keep track of what nodes to visit next?

• Key insight: the order we visit nodes at a given “level” is the same order we

visited their parents

• So the first parents to be visited have the first children that are visited

• . . . Can we use a queue?



Level-order traversal

• Level-order traversal is not recursive!

• How do we keep track of what nodes to visit next?

• Key insight: the order we visit nodes at a given “level” is the same order we

visited their parents

• So the first parents to be visited have the first children that are visited

• . . . Can we use a queue?



Level-order iterator

• To begin: push root onto the queue

• next():

• Dequeue node off the queue; store its value to be returned

• Enqueue its non-empty children onto the queue

• hasNext(): return if queue is empty

• Let’s look at the code



Level-order iterator

• To begin: push root onto the queue

• next():

• Dequeue node off the queue; store its value to be returned

• Enqueue its non-empty children onto the queue

• hasNext(): return if queue is empty

• Let’s look at the code



Level-order iterator

• To begin: push root onto the queue

• next():

• Dequeue node off the queue; store its value to be returned

• Enqueue its non-empty children onto the queue

• hasNext(): return if queue is empty

• Let’s look at the code



Level-order iterator

• To begin: push root onto the queue

• next():

• Dequeue node off the queue; store its value to be returned

• Enqueue its non-empty children onto the queue

• hasNext(): return if queue is empty

• Let’s look at the code



Level-order iterator

• To begin: push root onto the queue

• next():

• Dequeue node off the queue; store its value to be returned

• Enqueue its non-empty children onto the queue

• hasNext(): return if queue is empty

• Let’s look at the code



Level-order iterator

• To begin: push root onto the queue

• next():

• Dequeue node off the queue; store its value to be returned

• Enqueue its non-empty children onto the queue

• hasNext(): return if queue is empty

• Let’s look at the code



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Queue is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Queue: 9 24



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Queue is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Queue: 24 5 12



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Queue is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Queue: 5 12 22 30



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Queue is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Queue: 12 22 30



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Queue is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Queue: 22 30



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Queue is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Queue: 30



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Queue is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Queue: 29 35



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Queue is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Queue: 35



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Queue is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Queue:



Level-order Traversal

18

9

5 12

24

22 30

29 35

Nodes that we have already traversed are marked in green. The node we are

currently traversing is marked in orange. Queue is labelled with the values of the

nodes, but in reality the objects stored are of type BinaryTree

Queue:



Binary Search Trees



Finding Items Using Trees

• Goal: store items in a tree such that we can implement methods like add()

and contains() efficiently

• Don’t want to traverse the entire tree

• In an OrderedVector we store items in order to allow for efficient binary
search

• Though add() is still slow

• How can we do something similar for trees?



Finding Items Using Trees

• Goal: store items in a tree such that we can implement methods like add()

and contains() efficiently

• Don’t want to traverse the entire tree

• In an OrderedVector we store items in order to allow for efficient binary
search

• Though add() is still slow

• How can we do something similar for trees?



Finding Items Using Trees

• Goal: store items in a tree such that we can implement methods like add()

and contains() efficiently

• Don’t want to traverse the entire tree

• In an OrderedVector we store items in order to allow for efficient binary
search

• Though add() is still slow

• How can we do something similar for trees?



Finding Items Using Trees

• Goal: store items in a tree such that we can implement methods like add()

and contains() efficiently

• Don’t want to traverse the entire tree

• In an OrderedVector we store items in order to allow for efficient binary
search

• Though add() is still slow

• How can we do something similar for trees?



Finding Items Using Trees

• Goal: store items in a tree such that we can implement methods like add()

and contains() efficiently

• Don’t want to traverse the entire tree

• In an OrderedVector we store items in order to allow for efficient binary
search

• Though add() is still slow

• How can we do something similar for trees?



Binary Search Tree Invariant

• For every node n in a binary search tree with value v:

• All values v` of nodes that are descendants of the left child have values v` ≤ v

• All values vr of nodes that are descendants of the right child have values vr > v



Binary Search Tree Invariant

• For every node n in a binary search tree with value v:

• All values v` of nodes that are descendants of the left child have values v` ≤ v

• All values vr of nodes that are descendants of the right child have values vr > v



Binary Search Tree Invariant

• For every node n in a binary search tree with value v:

• All values v` of nodes that are descendants of the left child have values v` ≤ v

• All values vr of nodes that are descendants of the right child have values vr > v



Binary Search Tree Examples

18

9

5 12

24

22 30

29 35

Is this a binary search tree?



Binary Search Tree Examples

29

24

22

5

18

12

9

30

35

Is this a binary search tree? (It has the same elements!)



Binary Search Tree Examples

18

9

5 12

29

22 30

24 35

Is this a binary search tree?

No: note that all right descendants must be greater than the node



Binary Search Tree Examples

18

9

5 12

29

22 30

24 35

Is this a binary search tree?

No: note that all right descendants must be greater than the node



Finding an element in a binary search tree

18

9

5 12

24

22 30

29 35

• How can I search for an element

(say 14)?

• Recursively!

• Idea: we can look at a node and

know immediately if the element

we’re searching for is a descendant

of the left child, or of the right child

• Recurse on the appropriate node

• If we find the element, or if we hit

an empty node, we’re done



Finding an element in a binary search tree

18

9

5 12

24

22 30

29 35

• How can I search for an element

(say 14)?

• Recursively!

• Idea: we can look at a node and

know immediately if the element

we’re searching for is a descendant

of the left child, or of the right child

• Recurse on the appropriate node

• If we find the element, or if we hit

an empty node, we’re done



Finding an element in a binary search tree

18

9

5 12

24

22 30

29 35

• How can I search for an element

(say 14)?

• Recursively!

• Idea: we can look at a node and

know immediately if the element

we’re searching for is a descendant

of the left child, or of the right child

• Recurse on the appropriate node

• If we find the element, or if we hit

an empty node, we’re done



Finding an element in a binary search tree

18

9

5 12

24

22 30

29 35

• How can I search for an element

(say 14)?

• Recursively!

• Idea: we can look at a node and

know immediately if the element

we’re searching for is a descendant

of the left child, or of the right child

• Recurse on the appropriate node

• If we find the element, or if we hit

an empty node, we’re done



Finding an element in a binary search tree

18

9

5 12

24

22 30

29 35

• How can I search for an element

(say 14)?

• Recursively!

• Idea: we can look at a node and

know immediately if the element

we’re searching for is a descendant

of the left child, or of the right child

• Recurse on the appropriate node

• If we find the element, or if we hit

an empty node, we’re done



Adding an element to a binary search tree

18

9

5 12

24

22 30

29 35

• How can I add an element (say 23)?

• Recursively!

• Idea: we can look at a node and know

immediately if the element we’re adding

should be a descendant of the left child,

or of the right child

• Recurse on the appropriate node

• If we hit an empty node, replace it with

the element we want to add



Adding an element to a binary search tree

18

9

5 12

24

22 30

29 35

• How can I add an element (say 23)?

• Recursively!

• Idea: we can look at a node and know

immediately if the element we’re adding

should be a descendant of the left child,

or of the right child

• Recurse on the appropriate node

• If we hit an empty node, replace it with

the element we want to add



Adding an element to a binary search tree

18

9

5 12

24

22 30

29 35

• How can I add an element (say 23)?

• Recursively!

• Idea: we can look at a node and know

immediately if the element we’re adding

should be a descendant of the left child,

or of the right child

• Recurse on the appropriate node

• If we hit an empty node, replace it with

the element we want to add



Adding an element to a binary search tree

18

9

5 12

24

22 30

29 35

• How can I add an element (say 23)?

• Recursively!

• Idea: we can look at a node and know

immediately if the element we’re adding

should be a descendant of the left child,

or of the right child

• Recurse on the appropriate node

• If we hit an empty node, replace it with

the element we want to add



Adding an element to a binary search tree

18

9

5 12

24

22 30

29 35

• How can I add an element (say 23)?

• Recursively!

• Idea: we can look at a node and know

immediately if the element we’re adding

should be a descendant of the left child,

or of the right child

• Recurse on the appropriate node

• If we hit an empty node, replace it with

the element we want to add



Adding an element to a binary search tree

18

9

5 12

24

22

23

30

29 35

• How can I add an element (say 23)?

• Recursively!

• Idea: we can look at a node and know

immediately if the element we’re adding

should be a descendant of the left child,

or of the right child

• Recurse on the appropriate node

• If we hit an empty node, replace it with

the element we want to add



Adding an element to a binary search tree: caveat!

18

9

5 12

24

22 30

29 35

• How can I add something to a BST

that’s already in the tree

• For example: add 9 to this tree

• Idea: first, find the element. Then, find

an empty leaf where the new element

can go

• Rightmost descendant of left child



Adding an element to a binary search tree: caveat!

18

9

5 12

24

22 30

29 35

• How can I add something to a BST

that’s already in the tree

• For example: add 9 to this tree

• Idea: first, find the element. Then, find

an empty leaf where the new element

can go

• Rightmost descendant of left child



Adding an element to a binary search tree: caveat!

18

9

5 12

24

22 30

29 35

• How can I add something to a BST

that’s already in the tree

• For example: add 9 to this tree

• Idea: first, find the element. Then, find

an empty leaf where the new element

can go

• Rightmost descendant of left child



Adding an element to a binary search tree: caveat!

18

9

5 12

24

22 30

29 35

• How can I add something to a BST

that’s already in the tree

• For example: add 9 to this tree

• Idea: first, find the element. Then, find

an empty leaf where the new element

can go

• Rightmost descendant of left child



Adding an element to a binary search tree: caveat!

18

9

5

9

12

24

22 30

29 35

• How can I add something to a BST

that’s already in the tree

• For example: add 9 to this tree

• Idea: first, find the element. Then, find

an empty leaf where the new element

can go

• Rightmost descendant of left child



Implementing a Binary Search Tree



Comparing Elements

• Need some kind of way to compare elements

• What are our options?

• Store Comparable items, or use a Comparator

• The structure5 BinarySearchTree<E> assumes comparable items, but also
allows a Comparator to be used...how?



Comparing Elements

• Need some kind of way to compare elements

• What are our options?

• Store Comparable items, or use a Comparator

• The structure5 BinarySearchTree<E> assumes comparable items, but also
allows a Comparator to be used...how?



Comparing Elements

• Need some kind of way to compare elements

• What are our options?

• Store Comparable items, or use a Comparator

• The structure5 BinarySearchTree<E> assumes comparable items, but also
allows a Comparator to be used...how?



Comparing Elements

• Need some kind of way to compare elements

• What are our options?

• Store Comparable items, or use a Comparator

• The structure5 BinarySearchTree<E> assumes comparable items, but also
allows a Comparator to be used...how?



Natural Comparator

• Let’s say we have an item of type E that implements Comparable<E>

• That means we can already compare items of type E

• But, we want the flexibility to compare them other ways using a

Comparator<E>

• The NaturalComparator<E> implements Comparator<E>, and compares items

using their compareTo() method

• That way, we can write code assuming we always have a comparator; if we

want we can replace it with a different comparator

• Let’s look at the code



Natural Comparator

• Let’s say we have an item of type E that implements Comparable<E>

• That means we can already compare items of type E

• But, we want the flexibility to compare them other ways using a

Comparator<E>

• The NaturalComparator<E> implements Comparator<E>, and compares items

using their compareTo() method

• That way, we can write code assuming we always have a comparator; if we

want we can replace it with a different comparator

• Let’s look at the code



Natural Comparator

• Let’s say we have an item of type E that implements Comparable<E>

• That means we can already compare items of type E

• But, we want the flexibility to compare them other ways using a

Comparator<E>

• The NaturalComparator<E> implements Comparator<E>, and compares items

using their compareTo() method

• That way, we can write code assuming we always have a comparator; if we

want we can replace it with a different comparator

• Let’s look at the code



Natural Comparator

• Let’s say we have an item of type E that implements Comparable<E>

• That means we can already compare items of type E

• But, we want the flexibility to compare them other ways using a

Comparator<E>

• The NaturalComparator<E> implements Comparator<E>, and compares items

using their compareTo() method

• That way, we can write code assuming we always have a comparator; if we

want we can replace it with a different comparator

• Let’s look at the code



Natural Comparator

• Let’s say we have an item of type E that implements Comparable<E>

• That means we can already compare items of type E

• But, we want the flexibility to compare them other ways using a

Comparator<E>

• The NaturalComparator<E> implements Comparator<E>, and compares items

using their compareTo() method

• That way, we can write code assuming we always have a comparator; if we

want we can replace it with a different comparator

• Let’s look at the code



Natural Comparator

• Let’s say we have an item of type E that implements Comparable<E>

• That means we can already compare items of type E

• But, we want the flexibility to compare them other ways using a

Comparator<E>

• The NaturalComparator<E> implements Comparator<E>, and compares items

using their compareTo() method

• That way, we can write code assuming we always have a comparator; if we

want we can replace it with a different comparator

• Let’s look at the code



Binary Search Tree: Comparisons

• We’ll assume our items are comparable. But, another constructor takes a

Comparator to allow us to compare the items

• Let’s look at how these constructors work



Binary Search Tree: Comparisons

• We’ll assume our items are comparable. But, another constructor takes a

Comparator to allow us to compare the items

• Let’s look at how these constructors work



Building up the BST

• The BinaryTree class was recursive

• On the other hand, BinarySearchTree is made up of BinaryTrees

• Allows us to keep track of the number of items, a comparator, etc.

• Now: let’s look at the code to locate an item, or to add it to the tree



Building up the BST

• The BinaryTree class was recursive

• On the other hand, BinarySearchTree is made up of BinaryTrees

• Allows us to keep track of the number of items, a comparator, etc.

• Now: let’s look at the code to locate an item, or to add it to the tree



Building up the BST

• The BinaryTree class was recursive

• On the other hand, BinarySearchTree is made up of BinaryTrees

• Allows us to keep track of the number of items, a comparator, etc.

• Now: let’s look at the code to locate an item, or to add it to the tree



Building up the BST

• The BinaryTree class was recursive

• On the other hand, BinarySearchTree is made up of BinaryTrees

• Allows us to keep track of the number of items, a comparator, etc.

• Now: let’s look at the code to locate an item, or to add it to the tree



Finding an element in a binary search tree

18

9

5 12

24

22 30

29 35

• Idea: we can look at a node and

know immediately if the element

we’re searching for is a descendant

of the left child, or of the right child

• Recurse on the appropriate node

• If we find the element, or if we hit

an empty node, we’re done

• Let’s look at the code



Adding an element to a binary search tree

18

9

5 12

24

22

23

30

29 35

• Idea: we can look at a node and know

immediately if the element we’re adding

should be a descendant of the left child,

or of the right child

• Recurse on the appropriate node

• If we hit an empty node, replace it with

the element we want to add

• If adding a duplicate element, find

rightmost descendant of left child of

current location



Tree Vocabulary

• Descendant: A node n′ is a descendant of node n if there exists a sequence of

nodes n = n1, n2, . . . , ni = n′ such that for all 1 ≤ j < i, nj is a child of nj+1.

(Ancestor is the opposite)

• Siblings: Two nodes are siblings if they share the same parent

• Subtree: A subset of the nodes in a tree that themselves form a tree (possibly

with a different root node)

• Interior node: a node that is not a leaf



Tree Vocabulary

• Descendant: A node n′ is a descendant of node n if there exists a sequence of

nodes n = n1, n2, . . . , ni = n′ such that for all 1 ≤ j < i, nj is a child of nj+1.

(Ancestor is the opposite)

• Siblings: Two nodes are siblings if they share the same parent

• Subtree: A subset of the nodes in a tree that themselves form a tree (possibly

with a different root node)

• Interior node: a node that is not a leaf



Tree Vocabulary

• Descendant: A node n′ is a descendant of node n if there exists a sequence of

nodes n = n1, n2, . . . , ni = n′ such that for all 1 ≤ j < i, nj is a child of nj+1.

(Ancestor is the opposite)

• Siblings: Two nodes are siblings if they share the same parent

• Subtree: A subset of the nodes in a tree that themselves form a tree (possibly

with a different root node)

• Interior node: a node that is not a leaf



Tree Vocabulary

• Descendant: A node n′ is a descendant of node n if there exists a sequence of

nodes n = n1, n2, . . . , ni = n′ such that for all 1 ≤ j < i, nj is a child of nj+1.

(Ancestor is the opposite)

• Siblings: Two nodes are siblings if they share the same parent

• Subtree: A subset of the nodes in a tree that themselves form a tree (possibly

with a different root node)

• Interior node: a node that is not a leaf



Tree Vocabulary

• Descendant: A node n′ is a descendant of node n if there exists a sequence of

nodes n = n1, n2, . . . , ni = n′ such that for all 1 ≤ j < i, nj is a child of nj+1.

(Ancestor is the opposite)

• Siblings: Two nodes are siblings if they share the same parent

• Subtree: A subset of the nodes in a tree that themselves form a tree (possibly

with a different root node)

• Interior node: a node that is not a leaf



Tree Vocabulary

• Path: the unique shortest sequence of edges between two nodes n1 and n2.

Each successive edge in the path must share one of its nodes with the

previous edge.

• Full Tree: A tree where every leaf has the same depth h, and every internal

node has exactly two children

• Complete Tree: A full tree with 0 or more of the rightmost leaves of depth h

removed



Tree Vocabulary

• Path: the unique shortest sequence of edges between two nodes n1 and n2.

Each successive edge in the path must share one of its nodes with the

previous edge.

• Full Tree: A tree where every leaf has the same depth h, and every internal

node has exactly two children

• Complete Tree: A full tree with 0 or more of the rightmost leaves of depth h

removed



Tree Vocabulary

• Path: the unique shortest sequence of edges between two nodes n1 and n2.

Each successive edge in the path must share one of its nodes with the

previous edge.

• Full Tree: A tree where every leaf has the same depth h, and every internal

node has exactly two children

• Complete Tree: A full tree with 0 or more of the rightmost leaves of depth h

removed



Binary Search Tree Analysis

• How much time does a call to locate() take?

• Worst case

• Definitely not worse than O(n) (we never look at a node multiple times)

• Is there a tree where it’s actually O(n)? Yes; let’s try to create an example on the
board

• Let’s say we have a tree of height h. How long does a call to locate() take in
terms of h?

• Each time we call the method the height of the node increases by one, so O(h)

• If we have time: how can we prove this by induction?



Binary Search Tree Analysis

• How much time does a call to locate() take?

• Worst case

• Definitely not worse than O(n) (we never look at a node multiple times)

• Is there a tree where it’s actually O(n)? Yes; let’s try to create an example on the
board

• Let’s say we have a tree of height h. How long does a call to locate() take in
terms of h?

• Each time we call the method the height of the node increases by one, so O(h)

• If we have time: how can we prove this by induction?



Binary Search Tree Analysis

• How much time does a call to locate() take?

• Worst case

• Definitely not worse than O(n) (we never look at a node multiple times)

• Is there a tree where it’s actually O(n)? Yes; let’s try to create an example on the
board

• Let’s say we have a tree of height h. How long does a call to locate() take in
terms of h?

• Each time we call the method the height of the node increases by one, so O(h)

• If we have time: how can we prove this by induction?



Binary Search Tree Analysis

• How much time does a call to locate() take?

• Worst case

• Definitely not worse than O(n) (we never look at a node multiple times)

• Is there a tree where it’s actually O(n)? Yes; let’s try to create an example on the
board

• Let’s say we have a tree of height h. How long does a call to locate() take in
terms of h?

• Each time we call the method the height of the node increases by one, so O(h)

• If we have time: how can we prove this by induction?



Binary Search Tree Analysis

• How much time does a call to locate() take?

• Worst case

• Definitely not worse than O(n) (we never look at a node multiple times)

• Is there a tree where it’s actually O(n)? Yes; let’s try to create an example on the
board

• Let’s say we have a tree of height h. How long does a call to locate() take in
terms of h?

• Each time we call the method the height of the node increases by one, so O(h)

• If we have time: how can we prove this by induction?



Binary Search Tree Analysis

• How much time does a call to locate() take?

• Worst case

• Definitely not worse than O(n) (we never look at a node multiple times)

• Is there a tree where it’s actually O(n)? Yes; let’s try to create an example on the
board

• Let’s say we have a tree of height h. How long does a call to locate() take in
terms of h?

• Each time we call the method the height of the node increases by one, so O(h)

• If we have time: how can we prove this by induction?



Binary Search Tree Analysis

• How much time does a call to locate() take?

• Worst case

• Definitely not worse than O(n) (we never look at a node multiple times)

• Is there a tree where it’s actually O(n)? Yes; let’s try to create an example on the
board

• Let’s say we have a tree of height h. How long does a call to locate() take in
terms of h?

• Each time we call the method the height of the node increases by one, so O(h)

• If we have time: how can we prove this by induction?



Binary Search Tree Analysis

• How much time does a call to add() take?

• O(n) in a tree of size n

• O(h) in a tree of height h



Binary Search Tree Analysis

• How much time does a call to add() take?

• O(n) in a tree of size n

• O(h) in a tree of height h



Binary Search Tree Analysis

• How much time does a call to add() take?

• O(n) in a tree of size n

• O(h) in a tree of height h



Tree Discussion

• How many nodes are in a full tree of depth h?

• How can we sort using a Binary Search Tree?

• How much time does this take?



Tree Discussion

• How many nodes are in a full tree of depth h?

• How can we sort using a Binary Search Tree?

• How much time does this take?



Tree Discussion

• How many nodes are in a full tree of depth h?

• How can we sort using a Binary Search Tree?

• How much time does this take?



Making Binary Search Trees More Efficient

• Goal: ensure that our BST has small height

• What should our goal be for height?

• Complete trees are optimal; what is their height?

• O(log n)

• Can we design our Binary Search Tree so that it maintains height O(log n)?



Making Binary Search Trees More Efficient

• Goal: ensure that our BST has small height

• What should our goal be for height?

• Complete trees are optimal; what is their height?

• O(log n)

• Can we design our Binary Search Tree so that it maintains height O(log n)?



Making Binary Search Trees More Efficient

• Goal: ensure that our BST has small height

• What should our goal be for height?

• Complete trees are optimal; what is their height?

• O(log n)

• Can we design our Binary Search Tree so that it maintains height O(log n)?



Making Binary Search Trees More Efficient

• Goal: ensure that our BST has small height

• What should our goal be for height?

• Complete trees are optimal; what is their height?

• O(log n)

• Can we design our Binary Search Tree so that it maintains height O(log n)?



Making Binary Search Trees More Efficient

• Goal: ensure that our BST has small height

• What should our goal be for height?

• Complete trees are optimal; what is their height?

• O(log n)

• Can we design our Binary Search Tree so that it maintains height O(log n)?


	Tree Iterators
	Binary Search Trees
	Implementing a Binary Search Tree

