
Java Continued and Nim

Instructors: Sam McCauley and Dan Barowy

February 9, 2022

Control Flow and Loops

Two versions of a loop

Random rng = new Random();

int flip = rng.nextInt(2);

int count = 1;

while (flip == 0) {

//count flips until "heads"

flip = rng.nextInt(2);

count++;

}

Random rng = new Random();

int flip = rng.nextInt(2);

for(int count=1; flip==0; count++){

flip = rng.nextInt(2);

}

One more version of the loop

Random rng = new Random();

int flip = rng.nextInt(2), count =

1;

while (flip == 0) {

// count flips until "heads"

flip = rng.nextInt(2);

count++;

}

int flip, count = 0;

do {

//count flips until "heads"

flip = rng.nextInt(2);

count++;

} while (flip == 0);

Control Structures

• Select next statement to execute based on value of a boolean expression. Two

flavors:

• Looping structures: while, do/while, for

• Repeatedly execute same statement (block)

• Branching structures: if, if/else, switch

• Select one of several possible statements (blocks)
• Special: break/continue: exit a looping structure

• break: exits loop completely
• continue: proceeds to next iteration of loop
• break and continue are to be avoided unless it greatly simplifies or clarifies your
code

If/else

if (x > 0) // There is exactly 1 "if" clause

y = 1 / x;

else if (x < 0) { // 0 or more "else if" clauses

x = - x;

y = 1 / x;

}

else // at most 1 "else" clause

System.out.println("Can’t divide by 0!");

switch

int x = myCard.getSuit(); // a fictional method

//0 is spades; 1 is diamonds; 2 is hearts; 3 is clubs

switch (x) {

case 1: case 2:

System.out.println("Your card is red");

break;

case 0: case 3:

System.out.println("Your card is black");

break;

default:

System.out.println("Illegal suit code!");

break;

}

For & for-each

Here’s a typical for loop example

int[] grades = { 100, 78, 92, 87, 89, 90 };

int sum = 0;

for(int i = 0; i < grades.length; i++)

sum += grades[i];

This for construct is equivalent to

int[] grades = { 100, 78, 92, 87, 89, 90 };

int sum = 0;

int i = 0;

while (i < grades.length) {

sum += grades[i];

i++;

}

For & for-each

Here’s a typical for loop example

int[] grades = { 100, 78, 92, 87, 89, 90 };

int sum = 0;

for(int i = 0; i < grades.length; i++)

sum += grades[i];

Can also write (for-each construct; will see more later)

int[] grades = { 100, 78, 92, 87, 89, 90 };

int sum = 0;

for (int g : grades)

sum += g;

Loop Construct Notes

• The body of a while loop may not ever be executed

• The body of a do – while loop always executes at least once

• For loops are typically used when number of iterations desired is known in
advance. E.g.

• Execute loop exactly 100 times
• Execute loop for each element of an array

• The for-each construct is often used to access array (and other collection
type) values when no updating of the array is required

• We’ll explore this construct more later in the course

Methods in Java

Why methods?

• Used to group together code

• Well-organized code is often superior to well-documented, poorly-organized
code.

• A method should do one task

• Methods allow us to reuse code as well as use techniques like recursion.

Creating and using methods

• We can create a method as follows:

public static int getSum(int a, int b){

return a+b;

}

• (We’ll talk about public and static next week.)

• We can call a method as follows (this prints the sum of 3 and x):

System.out.println("The sum is " + getSum(3, x));

The String & Scanner Classes

The String Class

• String is not a primitive type in Java, it is a class type

• However, Java provides language level support for Strings

• String literals: “Bob was here!”, “-11.3”, “A”, “ ”

• A single character can be accessed using charAt()

• As with arrays, indexing starts at position 0
• String s = “computer”;
• char c = s.charAt(5); // c gets value ‘t’
• c = “oops”.charAt(4); // run-time error!

• String provides a length method

• int len = s.length(); // len gets value 8
• len = “ “.length(); // len gets value 0

Scanner class

• A way to get interactive input from a user!

• Not built-in; need to import in order to use:

• import java.util.Scanner;

• First, instantiate a Scanner:

• Scanner sc = new Scanner(System.in);

• Then, can use it to read in lines of text:

• System.out.println("Enter your name:");

• String name = sc.nextLine();

• Let’s look at an example: GuessNumber.java

Object Oriented Programming

The Plan

• I want to briefly mention objects today

• We’ll be filling in details starting on Friday!

• OK if you don’t completely get it—just some foundational concepts and vocab

Objects

• Primitive types are just data in Java: an int just stores a number; a char just

stores a character

• And nothing else!

• An object is fancier. It may store extra data, or multiple pieces of data. It may

even store some methods along with the data

• For example:

• An array doesn’t just store the data—it also stores the length

• A String has a .length() method

• A Random object has a .nextInt() method, and stores data to help generate
random numbers

Objects and Primitive Types

• Objects need to be instantiated with new

• You’ll be making your own types of objects very soon! But for lab 1, only need

to use the kinds of objects we’ve already discussed (String, Scanner, Random,

etc.)

Nim

This section

• Let’s talk about a game

• And then code it up!

• Goals:

• Java practice and. . .
• Maybe some useful ideas for lab 1?

Nim

At the game’s start, there are one or more piles of matchsticks.

• Players take turns.

• The player whose turn it is must choose one pile and remove one or more

matchsticks from that pile.

• The player who cannot remove a matchstick loses (i.e., the winner removes the

very last matchstick from the gameboard).

Let’s play a quick game of Nim

How can we code this up?

• How should we store the piles?

• How do we create the board?

• What is a legal move?

• How do we have it play the game?

Let’s Code up Nim!

Design Documents

• Example on website

• Idea: read through the lab

• Describe how you will implement it

• How will you store the data?
• What methods will you use?
• Etc.

• We’ll be collecting them in lab (so remember to bring them)!

	Control Flow and Loops
	Methods in Java
	The String & Scanner Classes
	Object Oriented Programming
	Nim
	Let's Code up Nim!

