CSCI 136:
Data Structures and
Advanced Programming
Lecture 33
Priority Queues / Dijkstra's Algorithm
Instructor: Dan Barowy

Williams

Your to-dos

1. Review readings from Bailey.
2. Study for the final exam.
a. Pro tip: review quizzes.
b. Do problems in study guide/practice exam.
c. Don't stress out! Just be methodical and do your best.
3. Work on resubmissions you plan to submit.

Topics

Topics
Student Course Surveys
Priority Queues
Dijkstra's algorithm

Announcements

1. No lab this week.
2. No colloquium this week.
3. Instead: end of year ice cream social on Friday.

Evaluation Forms

(all of these are anonymous)

We care a lot about what you say in these forms. Please take your time and write thoughtful responses.

Your feedback is very valuable to us!

Purpose of "Blue Sheets"

Student comments on the blue sheets [...] are solely for your benefit. They are not made available to department or program chairs, the Dean of the Faculty, or the CAP for evaluation purposes.
-Office of the Provost, Williams College

Blue sheet prompts:

* What course topic did you enjoy the most?
* What course topic did you least enjoy? Do you think that it was valuable to learn anyway?
* Are there other aspects of the course that you liked or disliked? (E.g., office hours, TAs, assignments, course structure, meeting times, etc.)
Feel free to suggest an alternative approach.
* Did you look forward to coming to class?

(Binary) max heap

Max heap property: for any given node n, if p is a parent node of n, then the key of p is \geq the key of n.

Insertion

Suppose we want to insert a new node,

First, insert the new node at the first available position in the tree that maintains completeness.

Insertion

$23 \geq 78$?
No.

If the max heap property is violated, swap.

Insertion

$23 \geq 78$?
No.

Next, compare the new node with its parent.

Insertion

$42 \geq 78$?
No.

Continue swapping the new node with parents unti the max heap property is satisfied.

Continue swapping the new node with parents until the max heap property is satisfied (parent \geq node or no parents remain).

Insertion

$42 \geq 78$?
No.

The swapping procedure performed on insert is often referred to as heap-up or percolate-up.

Find-max

To find the maximum element in a max heap, simply return the root.

Extract

To remove and return the maximum element in a max heap, first perform find-max.

Extract

78

Temporarily store the max element.

Extract

78

Replace the root with the last element in the complete tree.

Extract

78

Replace the root with the last element in the complete tree.

Extract

78

$23 \geq 42$?
No.

Compare the root with its children. Swap the root with the largest element.

Extract

78

$23 \geq 42$?
No.

Compare the root with its children. Swap the root with the largest element.

Extract

$23 \geq-1$?
Yes.

Continue swapping until the max heap property is satisfied (parent \geq node or no parents remain).

Extract

The swapping procedure performed on extract is often referred to as heap-down or percolate-down.

A binary heap is often implemented using an implicit binary tree data structure. In other words, heap nodes are actually stored in an array or vector.

```
    leftChild(i) = 2 x i + 1
rightChild(i) = 2 x i + 2
parent(i) = [(i-1) / 2)}
```


Max heap in action

Max heap in action

Build a max heap from the following elements:

But store the elements in an array (i.e., an implicit binary tree). Process nodes from left to right.

Max heap in action

(0) -7 99

Max heap in action

Max heap in action

Max heap in action

Done!

Max heap in action

Advantages:
find-max: O(1) insert: O(log n) extract: $\mathrm{O}(\log n)$

Lots of interesting variants on heaps!
Summary of running times [edit]
In the following time complexities ${ }^{[5]} O(f)$ is an asymptotic upper bound and $\theta(f)$ is an
asymptotically tight bound (see Big O notation). Function names assume a min-heap.

Operation	find-min	delete-min	insert	decrease-key	merge
Binary ${ }^{[5]}$	$\theta(1)$	$\theta(\log n)$	$O(\log n)$	$O(\log n)$	$\theta(n)$
Leftist	$\theta(1)$	$\theta(\log n)$	$\theta(\log n)$	O(logn)	$\theta(\log n)$
Binomial ${ }^{[5]}$	$\theta(\log n)$	$\theta(\log n)$	$\theta(1)^{[a]}$	$\theta(\log n)$	$O(\log n)^{[b]}$
Fibonaccili[][]	$\theta(1)$	$O(\log n)^{[a]}$	$\theta(1)$	$\theta(1)^{[a]}$	$\theta(1)$
Pairing ${ }^{[7]}$	$\theta(1)$	$O(\log n)^{[a]}$	$\theta(1)$	$o(\log n)^{[\underline{a l}[][]}$	$\theta(1)$
Brodal ${ }^{[10][d]}$	$\theta(1)$	$O(\log n)$	$\theta(1)$	$\theta(1)$	$\theta(1)$
Rank-pairing ${ }^{[12]}$	$\theta(1)$	$O(\log n)^{[a]}$	$\theta(1)$	$\theta(1)^{[a]}$	$\theta(1)$
Strict Fibonaciei ${ }^{[13]}$	$\theta(1)$	$O(\log n)$	$\theta(1)$	$\theta(1)$	$\theta(1)$
2-3 heap	?	$O(\log n)^{[a]}$	$O(\log n)^{[a]}$	$\theta(1)$?

a. $\wedge a b c d e f g h \prime$ Amortized time.
c. \wedge Lower bound of $\Omega(\log \log n))^{[8]}$ upper bound of $O\left(2^{2} \sqrt{\log [\log n}\right) \cdot[9]$
d. ^ Brodal and Okasaki later describe a persistent variant with the same bounds except for decrease-key, which is not supported. Heaps with n elements can be constructed bottom-up in
On. $[11]$ $O(n){ }^{[11]}$
From Wikipedia: priority queue page.

Graphs: shortest paths

Shortest path problem

The shortest path problem is the problem of finding a path between two vertices in a graph such that the sum of the weights of its constituent edges is minimized.

Applications

Applications

Applications

Dijkstra's algorithm

- Invented by Edsgar Dijkstra in 1959.
- The original version used a min-priority queue.
- Designed using pencil and paper; algorithm was intended to demonstrate to non-technical people how computers could be useful.

Looking for path from A to F .

\begin{tabular}{|c|c|c|}
\hline \& \multicolumn{2}{|c|}{dist}

\hline ${ }_{3}^{2}{ }_{3}^{1}$ create vertex sete 8 \& A \& 0

\hline for each vertex v in Graph: \& B \& 4

\hline ${ }_{7}{ }_{7}$ \& C \& ∞

\hline \& D \& ∞

\hline ${ }_{12}^{11}$ while Q is not empty: \& E \& ∞

\hline ${ }_{14}^{13} \quad u$ - vertex in Q with min dist(u) \& F \& ∞

\hline \& G \& ∞

\hline \& \multicolumn{2}{|c|}{prev}

\hline \& A
B
C
D
E
F
G

[B, \& | undef |
| :--- |
| A |
| undef |
| E, F\} |

\hline
\end{tabular}

Graphs: traveling salesperson

Recap \& Next Class

Today:
Priority queues
Heaps

Next class:

Dijkstra's algorithm

