
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 33
Priority Queues / Dijkstra’s Algorithm

Topics

Student Course Surveys

Priority Queues

Dijkstra’s algorithm

Your to-dos

1. Review readings from Bailey.
2. Study for the final exam.

a. Pro tip: review quizzes.
b. Do problems in study guide/practice exam.
c. Don’t stress out! Just be methodical and do

your best.
3. Work on resubmissions you plan to submit.

Announcements

1. No lab this week.
2. No colloquium this week.
3. Instead: end of year ice cream social on Friday.

Evaluation Forms

(all of these are anonymous)

We care a lot about what you say in these
forms. Please take your time and write

thoughtful responses.

Your feedback is very valuable to us!

Purpose of SCS Forms

“[T]he SCS provides instructors with feedback regarding their
courses and teaching. The faculty legislation governing the
SCS provides that SCS results are made available to the
appropriate department chair, the Dean of the Faculty, and at
appropriate times, to members of the Committee on
Appointments and Promotions (CAP). The results are
considered in matters of faculty reappointment, tenure, and
promotion.”

—Office of the Provost, Williams College

Purpose of “Blue Sheets”

Student comments on the blue sheets […] are solely for your
benefit. They are not made available to department or program
chairs, the Dean of the Faculty, or the CAP for evaluation
purposes.

—Office of the Provost, Williams College

Blue sheet prompts:

* Did you look forward to coming to class?

* What course topic did you enjoy the most?

* What course topic did you least enjoy? Do you think that it
was valuable to learn anyway?

* Are there other aspects of the course that you liked or
disliked? (E.g., office hours, TAs, assignments, course
structure, meeting times, etc.) 
Feel free to suggest an alternative approach.

(Binary) max heap

42

3 23

1 0 -1

Max heap property: for any given node n, if p is a
parent node of n, then the key of p is ≥ the key of n.

Insertion

42

3 23

1 0 -1

A binary heap is usually implemented as an always-
complete binary tree.

Insertion

42

3 23

1 0 -1

Suppose we want to insert a new node, 78

Insertion

First, insert the new node at the first available position
in the tree that maintains completeness.

78

42

3 23

1 0 -1

Insertion

Next, compare the new node with its parent.

78

42

3 23

1 0 -1

23 ≥ 78 ?
No.

23

Insertion

If the max heap property is violated, swap.

42

3

1 0 -1

23 ≥ 78 ?
No.

78

23

Insertion

Continue swapping the new node with parents until
the max heap property is satisfied.

42

3

1 0 -1

42 ≥ 78 ?
No.

78

23

Insertion

Continue swapping the new node with parents until
the max heap property is satisfied (parent ≥ node or
no parents remain).

423

1 0 -1

42 ≥ 78 ?
No.

78

23

Insertion

The swapping procedure performed on insert is
often referred to as heap-up or percolate-up.

423

1 0 -1

42 ≥ 78 ?
No.

78

23

Find-max

To find the maximum element in a max heap, simply
return the root.

423

1 0 -1

7878

23

Extract

To remove and return the maximum element in a
max heap, first perform find-max.

423

1 0 -1

7878

23

Extract

Temporarily store the max element.

423

1 0 -1

78

23

Extract

Replace the root with the last element in the
complete tree.

423

1 0 -1

78

Extract

Replace the root with the last element in the
complete tree.

423

1 0 -1

78

23

Extract

Compare the root with its children. Swap the root
with the largest element.

423

1 0 -1

78

23
23 ≥ 42 ?
No.

Extract

42

3

1 0 -1

78 23

Compare the root with its children. Swap the root
with the largest element.

23 ≥ 42 ?
No.

Extract

Continue swapping until the max heap property is
satisfied (parent ≥ node or no parents remain).

42

3

1 0 -1

78

23 ≥ -1 ?
Yes.

23

Extract

Return the saved maximum element.

42

3

1 0 -1

78 23

Extract

42

3

1 0 -1

23

The swapping procedure performed on extract is
often referred to as heap-down or percolate-down.

Implementation

0 1 2 3 4 5 6 7

a b c d e f g

left child right child

leftChild(i) = 2 × i + 1

rightChild(i) = 2 × i + 2

parent(i) = ⌊(i − 1) ∕ 2)⌋

A binary heap is often implemented using an implicit
binary tree data structure. In other words, heap nodes
are actually stored in an array or vector.

Max heap in action
Build a max heap from the following elements:

56 5 57 0 -7 99

But store the elements in an array (i.e., an implicit
binary tree). Process nodes from left to right.

0 1 2 3 4 5 6 7

a b c d e f g

left child right child
leftChild(i) = 2 × i + 1

rightChild(i) = 2 × i + 2

parent(i) = ⌊(i − 1) ∕ 2)⌋

0 1 2 3 4 5 6 7

left child right child

Max heap in action

56 5 57 0 -7 99

0 1 2 3 4 5 6 7

left child right child

Max heap in action

5 57 0 -7 99

56

0 1 2 3 4 5 6 7

left child right child

Max heap in action

57 0 -7 99

56 5

0 1 2 3 4 5 6 7

left child right child

Max heap in action

0 -7 99

56 5 57

0 1 2 3 4 5 6 7

left child right child

Max heap in action

0 -7 99

57 5 56

0 1 2 3 4 5 6 7

left child right child

Max heap in action

-7 99

57 5 56 0

0 1 2 3 4 5 6 7

left child right child

Max heap in action

99

57 5 56 0 -7

0 1 2 3 4 5 6 7

left child right child

Max heap in action

57 5 56 0 -7 99

0 1 2 3 4 5 6 7

left child right child

Max heap in action

57 5 99 0 -7 56

0 1 2 3 4 5 6 7

left child right child

Max heap in action

99 5 57 0 -7 56

Done!

Advantages:
find-max: O(1)
insert: O(log n)
extract: O(log n)

0 1 2 3 4 5 6 7

99 5 57 0 -7 56

left child right child

Max heap in action Lots of interesting variants on heaps!

From Wikipedia: priority queue page.

Recall the example
from our first class

Graphs: shortest paths

Shortest path problem

The shortest path problem is the problem of finding a path
between two vertices in a graph such that the sum of the
weights of its constituent edges is minimized.

Applications Applications

Applications Applications

Dijkstra’s algorithm

• I n v e n t e d b y E d s g a r
Dijkstra in 1959.

• The original version used
a min-priority queue.

• Designed using pencil and
paper; a lgor i thm was
intended to demonstrate
to non-technical people
how computers could be
useful.

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

A ∞
B ∞
C ∞
D ∞
E ∞
F ∞
G ∞

dist

prev

Q

{A, B, C, D, E, F}

Looking for path from A to F.

A undef
B undef
C undef
D undef
E undef
F undef
G undef

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

A 0
B ∞
C ∞
D ∞
E ∞
F ∞
G ∞

dist

prev

Q

{A, B, C, D, E, F}

A undef
B undef
C undef
D undef
E undef
F undef
G undef

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u

A 0
B ∞
C ∞
D ∞
E ∞
F ∞
G ∞

dist

prev

Q

{B, C, D, E, F}

A undef
B undef
C undef
D undef
E undef
F undef
G undef

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u
0 + 4

A 0
B 4
C ∞
D ∞
E ∞
F ∞
G ∞

dist

prev

Q

{B, C, D, E, F}

A undef
B A
C undef
D undef
E undef
F undef
G undef

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u
0 + 4

0 + 2

A 0
B 4
C 2
D ∞
E ∞
F ∞
G ∞

dist

prev

Q

{B, C, D, E, F}

A undef
B A
C A
D undef
E undef
F undef
G undef

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u

0 + 4

0 + 2

A 0
B 4
C 2
D ∞
E ∞
F ∞
G ∞

dist

prev

Q

{B, D, E, F}

A undef
B A
C A
D undef
E undef
F undef
G undef

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u

0 + 4

0 + 2

A 0
B 4
C 2
D ∞
E 5
F ∞
G ∞

dist

prev

Q

{B, D, E, F}

A undef
B A
C A
D undef
E C
F undef
G undef

2 + 3

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u

0 + 4

0 + 2

A 0
B 4
C 2
D ∞
E 5
F ∞
G ∞

dist

prev

Q

{D, E, F}

A undef
B A
C A
D undef
E C
F undef
G undef

2 + 3

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u

0 + 4

0 + 2

A 0
B 4
C 2
D 14
E 5
F ∞
G ∞

dist

prev

Q

{D, E, F}

A undef
B A
C A
D B
E C
F undef
G undef

2 + 3

4 + 10

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u

0 + 4

0 + 2

A 0
B 4
C 2
D 14
E 5
F ∞
G ∞

dist

prev

Q

{D, F}

A undef
B A
C A
D B
E C
F undef
G undef

2 + 3

4 + 10

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u

0 + 4

0 + 2

A 0
B 4
C 2
D 9
E 5
F ∞
G ∞

dist

prev

Q

{D, F}

A undef
B A
C A
D E
E C
F undef
G undef

2 + 3

4 + 10

5 + 4

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

0 + 4

0 + 2

A 0
B 4
C 2
D 9
E 5
F ∞
G ∞

dist

prev

Q

{F}

A undef
B A
C A
D E
E C
F undef
G undef

2 + 3

4 + 10

5 + 4

u

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

0 + 4

0 + 2

A 0
B 4
C 2
D 9
E 5
F 20
G ∞

dist

prev

Q

{F}

A undef
B A
C A
D E
E C
F D
G undef

2 + 3

4 + 10

5 + 4

u

9 + 11

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

0 + 4

0 + 2

A 0
B 4
C 2
D 9
E 5
F 20
G ∞

dist

prev

Q

{}

A undef
B A
C A
D E
E C
F D
G undef

2 + 3

4 + 10

5 + 4

9 + 11

Done!

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Read prev backward from F and reverse.

0 + 4

0 + 2

A 0
B 4
C 2
D 9
E 5
F 20
G ∞

dist

prev

Q

{}

A undef
B A
C A
D E
E C
F D
G undef

2 + 3

4 + 10

5 + 4

9 + 11

Done!

Graphs: traveling salesperson

Applications
Delivery routes.

Optimal 49,687-stop pub crawl

Applications

http://www.math.uwaterloo.ca/tsp/

Recap & Next Class

Today:

Next class:

Priority queues

Dijkstra’s algorithm

Heaps

