
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 32
Heaps

Topics

Heaps

Your to-dos

1. Read before Wed: Review readings from Bailey.
2. Lab 10 (partner lab), due Tuesday 5/10 by

10pm.

Announcements

1. Senior thesis presentations in Wege auditorium:
a. Monday, May 16, 10am-noon
b. Monday, May 16, 1:30-3pm

2. Ward prize presentations for best class project in
Wege auditorium: 
Tuesday, May 17, 2:30-4pm

Announcements

1. Final exam: Sunday, May 22, 9:30am in TPL
205.

2. Note that all of the practice quiz solutions are
on the course website.

Announcements

1. Student course surveys, 
in class,Wednesday, 5/11.

a. Please bring laptop/tablet to fill out survey.
2. Final exam review session, 

in class, Friday 5/13.

Practice Activity
(+ cookies)

Activity: connectedness
boolean connected():

How might I compute this using fundamental ops?

(adjacent, vertices, incident, degree, neighbors)

c

b
a

d

e

(note that graph is undirected)

Idea: breadth-first counting
Idea:

(suppose we know |G|)
boolean isConnected(Vertex start)

1. let count = 0
2. let Q be an empty queue
3. enqueue start
4. while Q not empty

a. dequeue v
b. count v
c. mark v as visited
d. put v’s unmarked neighbors in Q

5. if count = # of vertices in graph, return true else false

c

b
a

d

e

Q

count 0

e

Algorithm: connectedness
initialize algorithm

c

b
a

d

e

Q

count 0

dequeue v

Algorithm: connectedness

c

b
a

d

e

Q

count 1

count v

Algorithm: connectedness

c

b
a

d

e

Q

count 1

mark v

Algorithm: connectedness

c

b
a

d

e

Q

count 1

c

enqueue unmarked neighbors

Algorithm: connectedness

c

b
a

d

e

Q

count 1

dequeue v

Algorithm: connectedness

c

b
a

d

e

Q

count 2

count v

Algorithm: connectedness

c

b
a

d

e

Q

count 2

mark v

Algorithm: connectedness

c

b
a

d

e

Q

count 2

d

enqueue unmarked neighbors

Algorithm: connectedness

c

b
a

d

e

Q

count 2

dequeue v

Algorithm: connectedness

c

b
a

d

e

Q

count 3

count v

Algorithm: connectedness

c

b
a

d

e

Q

count 3

mark v

Algorithm: connectedness

c

b
a

d

e

Q

count 3

b a

enqueue unmarked neighbors

Algorithm: connectedness

c

b
a

d

e

Q

count 3

a

dequeue v

Algorithm: connectedness

c

b
a

d

e

Q

count 4

a

count v

Algorithm: connectedness

c

b
a

d

e

Q

count 4

a

mark v

Algorithm: connectedness

c

b
a

d

e

Q

count 4

a a

enqueue unmarked neighbors

Algorithm: connectedness

c

b
a

d

e

Q

count 4

a

dequeue v

Algorithm: connectedness

c

b
a

d

e

Q

count 5

a

count v

Algorithm: connectedness

c

b
a

d

e

Q

count 5

a

mark v

Algorithm: connectedness

c

b
a

d

e

Q

count 5

dequeue v (but don’t visit)

Algorithm: connectedness

c

b
a

d

e

Q

count 5 return 5 == 5
(true)

compute |G| == count

Algorithm: connectedness
Priority Queue

A priority queue is an abstract data type that returns the
elements in priority order. Under priority ordering, an
element e with a higher priority (an integer) is returned
before all elements L having lower priority, even if that e was
enqueued after all L. When any two elements have equal
priority, they are returned in first-in, first-out order (i.e., in
the order in which they were enqueued).

Note

I will refer here to the maximum priority. But you could also
refer to minimum priority. All that matters is that you order
your data with respect to some extremum.

Priority Queue

0 1 2 3

Ordinary letter Blue letter

Priority Queue

0 1 2 3

Ordinary letter Blue letter

enqueue

Priority Queue

0 1 2 3

Ordinary letter Blue letter

enqueue

Priority Queue

0 1 2 3

Ordinary letter Blue letter

enqueue

Priority Queue

0 1 2 3

Ordinary letter Blue letter

extract

Priority Queue

0 1 2 3

Ordinary letter Blue letter

extract

Priority Queue

0 1 2 3

Ordinary letter Blue letter

extract

Priority Queue

0 1 2 3

Ordinary letter Blue letter

blue letters: enqueue

Priority Queue

0 1 2 3

Ordinary letter Blue letter

blue letters: extract

Priority Queue: Operations
insert: inserts an element with a given
priority value. Ensures that the next
element of the queue is in priority order.
Like enqueue.

0 1 2 3

Priority Queue: Operations

find-max: returns the next element with
a highest priority value. Like peek, does
not modify the queue.

0 1 2 3

Priority Queue: Operations

extract: removes and returns the next
element with a maximum priority value.
Like dequeue.

0 1 2 3

Priority Queue
How to implement?

Vector:
find-max: O(1)
insert: O(n)
extract: O(n)

Heap:
find-max: O(1)
insert: O(log n)
extract: O(log n)

BinarySearchTree:
find-max: O(n)
insert: O(n)
extract: O(n)

Priority Queue

Is it necessary to keep the
entire queue in sorted order?

Operations:

find-max
insert

extract

Heaps

Max Heap

A max heap is a tree-based data structure that returns its
elements in priority order. A heap maintains the max heap
property: for any given node n, if p is a parent node of n,
then the key of p is ≥ to the key of n.

A max heap is a tree whose root is the maximum element
and whose subtrees are, themselves, heaps.

Is this a binary search tree?

No. Nodes do not obey binary search property.

42

3 23

1 0 -1

(Binary) max heap

42

3 23

1 0 -1

Max heap property: for any given node n, if p is a
parent node of n, then the key of p is ≥ the key of n.

Insertion

42

3 23

1 0 -1

A binary heap is usually implemented as an always-
complete binary tree.

Insertion

42

3 23

1 0 -1

Suppose we want to insert a new node, 78

Insertion

First, insert the new node at the first available position
in the tree that maintains completeness.

78

42

3 23

1 0 -1

Insertion

Next, compare the new node with its parent.

78

42

3 23

1 0 -1

23 ≥ 78 ?
No.

23

Insertion

If the max heap property is violated, swap.

42

3

1 0 -1

23 ≥ 78 ?
No.

78

23

Insertion

Continue swapping the new node with parents until
the max heap property is satisfied.

42

3

1 0 -1

42 ≥ 78 ?
No.

78

23

Insertion

Continue swapping the new node with parents until
the max heap property is satisfied (parent ≥ node or
no parents remain).

423

1 0 -1

42 ≥ 78 ?
No.

78

23

Insertion

The swapping procedure performed on insert is
often referred to as heap-up or percolate-up.

423

1 0 -1

42 ≥ 78 ?
No.

78

23

Find-max

To find the maximum element in a max heap, simply
return the root.

423

1 0 -1

7878

23

Extract

To remove and return the maximum element in a
max heap, first perform find-max.

423

1 0 -1

7878

23

Extract

Temporarily store the max element.

423

1 0 -1

78

23

Extract

Replace the root with the last element in the
complete tree.

423

1 0 -1

78

Extract

Replace the root with the last element in the
complete tree.

423

1 0 -1

78

23

Extract

Compare the root with its children. Swap the root
with the largest element.

423

1 0 -1

78

23
23 ≥ 42 ?
No.

Extract

42

3

1 0 -1

78 23

Compare the root with its children. Swap the root
with the largest element.

23 ≥ 42 ?
No.

Extract

Continue swapping until the max heap property is
satisfied (parent ≥ node or no parents remain).

42

3

1 0 -1

78

23 ≥ -1 ?
Yes.

23

Extract

Return the saved maximum element.

42

3

1 0 -1

78 23

Extract

42

3

1 0 -1

23

The swapping procedure performed on extract is
often referred to as heap-down or percolate-down.

Recap & Next Class

Today:

Next class:

Priority queues

Dijkstra’s algorithm

Heaps

