CSCI 136:
Data Structures
and
Advanced Programming

Lecture 32
Heaps

Instructor: Dan Barowy
Williams

Topics

Heaps

1.

Read before Wed: Review readings from Bailey.
2. Lab 10 (partner lab), due Tuesday 5/10 by

10pm.

Your to-dos

Announcements

1. Senior thesis presentations in Wege auditorium:
a. Monday, May 16, 10am-noon
b. Monday, May 16, 1:30-3pm

2. Ward prize presentations for best class project in
Wege auditorium:
Tuesday, May 17, 2:30-4pm




Announcements

Final exam: Sunday, May 22, 9:30am in TPL

205.
Note that all of the practice quiz solutions are

on the course website.

1.

2.

Announcements

Student course surveys,

in class,Wednesday, 5/11.

a. Please bring laptop/tablet to fill out survey.
Final exam review session,

in class, Friday 5/13.

Practice Activity
(+ cookies)

Activity: connectedness

boolean connected():
How might | compute this using fundamental ops?

(adjacent, vertices, incident, degree, neighbors)

(note that graph is undirected)




Idea:

|dea: breadth-first counting

(suppose we know IGl)

boolean isConnected (Vertex start)

Bw o

let count = 0

let © be an empty queue
. enqueue start

while Q not empty

a.

b.

C.

d.

dequeue v

count v

mark v as visited

put v’s unmarked neighbors in Q

5. if count = # of vertices in graph, return true else false

Algorithm: connectedness

initialize algorithm

count 0

Algorithm: connectedness

dequeue v

count 0

Algorithm: connectedness

count v

count 1




Algorithm: connectedness

mark v

count 1

Algorithm: connectedness

enqueue unmarked neighbors

count 1

Algorithm: connectedness

dequeue v

(o
o9

count 1

Algorithm: connectedness

countv

O
o—°

count 2




Algorithm: connectedness

mark v

O
o °

count 2

Algorithm: connectedness

enqueue unmarked neighbors

O
o °

count 2

0 d

Algorithm: connectedness

dequeue v

count 2

Algorithm: connectedness

count v

count 3




Algorithm: connectedness

mark v

count 3

Algorithm: connectedness

enqueue unmarked neighbors

count 3

Algorithm: connectedness

dequeue v

count 3

Algorithm: connectedness

count v

count 4




Algorithm: connectedness

mark v

count 4

Algorithm: connectedness

enqueue unmarked neighbors

count 4

Algorithm: connectedness

dequeue v

count 4

Algorithm: connectedness

count v

count 5




Algorithm: connectedness Algorithm: connectedness

mark v dequeue v (but don't visit)

count 5 count 5

Algorithm: connectedness

compute IGI == count Priority Queue

/ e A priority queue is an abstract data type that returns the
elements in priority order. Under priority ordering, an
element e with a higher priority (an integer) is returned

/ before all elements L having lower priority, even if that e was
e enqueued after all L. When any two elements have equal
°/ priority, they are returned in first-in, first-out order (i.e., in
the order in which they were enqueued).
count 5 return 5 ==
(true)




Note Priority Queue

| will refer here to the maximum priority. But you could also
refer to minimum priority. All that matters is that you order
your data with respect to some extremum.

Ordinary letter - Blue letter

Priority Queue

enqueue

AR g

Ordinary letter . Blue letter

Priority Queue

enqueue
%fm (=g ‘E‘E @

Sl TR
Ordinary letter Blue letter




Priority Queue

enqueue
0 1 2 3

Priority Queue

extract

0 1 2 3

Priority Queue

extract

R e 2R e

0 1 2 3

Ordinary letter . Blue letter

Priority Queue

extract

B g

0 1 2 3

Ordinary letter . Blue letter




Priority Queue

blue letters: enqueue

0 1 2 3

Priority Queue

blue letters: extract

Priority Queue: Operations

insert: inserts an element with a given
priority value. Ensures that the next

element of the queue is in priority order.

Like enqueue.

Priority Queue: Operations

find-max: returns the next element with
a highest priority value. Like peek, does
not modify the queue.

e o
= o = o
¢ ¢
¢ ¢




Priority Queue: Operations

extract: removes and returns the next

element with a maximum priority value.

Like dequeue.

i g

- - B gﬁg“”

Priority Queue

How to implement?

Vector: BinarySearchTree:
find-max: O(1) find-max: O(n)
insert: O(n) insert: O(n)
extract: O(n) extract: O(n)

Heap:

find-max: O(1)
insert: O(log n)
extract: O(log n)

Priority Queue

Is it necessary to keep the
entire queue in sorted order?

Operations:

find-max
insert
extract

Heaps




Max Heap

A max heap is a tree-based data structure that returns its
elements in priority order. A heap maintains the max heap
property: for any given node n, if p is a parent node of n,
then the key of p is = to the key of n.

A max heap is a tree whose root is the maximum element
and whose subtrees are, themselves, heaps.

Is this a binary search tree?

No. Nodes do not obey binary search property.

(Binary) max heap

Max heap property: for any given node n, if p is a
parent node of n, then the key of p is = the key of n.

Insertion

A binary heap is usually implemented as an always-
complete binary tree.




Insertion

ﬁ

Suppose we want to insert a new node, @

Insertion

First, insert the new node at the first available position
in the tree that maintains completeness.

Insertion

/@\

23=787?
No.

Next, compare the new node with its parent.

Insertion

/@\

23=78 7
No.

If the max heap property is violated, swap.




Insertion

42 =78 ?
No.

Continue swapping the new node with parents until
the max heap property is satisfied.

Insertion

42 =78 ?
No.

Continue swapping the new node with parents until
the max heap property is satisfied (parent = node or
no parents remain).

Insertion

42 =78 ?
No.

The swapping procedure performed on insert is
often referred to as heap-up or percolate-up.

Find-max

To find the maximum element in a max heap, simply
return the root.




Extract

To remove and return the maximum element in a
max heap, first perform find-max.

Extract

Temporarily store the max element.

Extract

Replace the root with the last element in the
complete tree.

Extract

Replace the root with the last element in the
complete tree.




Extract

23=42"?
No.

Compare the root with its children. Swap the root
with the largest element.

Extract

Compare the root with its children.
with the largest element.

23=42 7
No.

Swap the root

Extract

23=-17?

@ Yes.
O 00

Continue swapping until the max heap property is
satisfied (parent = node or no parents remain).

Extract

Return the saved maximum element.




Recap & Next Class
Extract

Today:

Priority queues

ﬁ Heaps

0 00 Next class:

The swapping procedure performed on extract is Dijkstra’s algorithm

often referred to as heap-down or percolate-down.




