
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 31
Graphs

Topics

Graphs

Your to-dos

1. Read before Fri: Bailey, Ch. 13.4.
2. Lab 10 (partner lab), due Tuesday 5/10 by

10pm.

Announcements

Friday, May 6 @ 2:35pm*
Computer Science Colloquium – Wege TCL 123
On Equity in Access
*Williams students, faculty and staff only.

Suresh Venkatasubramanian is a professor in computer
science and data science, currently at the White House in the
Office of Science and Technology Policy. His background is in
theoretical computer science, and he’s taken a long and
winding path through many areas of data science. For almost
the past decade, he’s been interested in algorithmic fairness,
and more broadly the impact of automated decision-making
systems in society.

Suresh Venkatasubramanian (White House; Brown U)

Graphs Graph operations

Fundamental graph ADT operations

d

a

b

c

bool adjacent(Vertex u, Vextex v):

Given vertices u and v, are they adjacent?

(i.e., share an edge?)

adjacent(a, d) = true

adjacent(a, b) = false

adjacent(a, c) = false

Fundamental graph ADT operations

d

a

b

c

bool incident(Vertex v, Edge e):

Given vertex v and edge e, are they incident?

(i.e., is v an endpoint of edge e?)

incident(a, 1) = true

incident(a, 2) = false

1

2

3

Fundamental graph ADT operations

d

a

b

c

Vertex[] vertices(Edge e):

Given edge e, what are its end points?

1

2

3

vertices(1) = [a, b]

vertices(2) = [d, b]

Fundamental graph ADT operations

d

a

b

c

int degree(Vertex v):

Given vertex v how many vertices are adjacent?

degree(a) = 2

degree(c) = 0

Fundamental graph ADT operations

d

a

b

c

Vertex[] neighbors(Vertex v):

Given vertex v what other vertices are adjacent?

neighbors(a) = [d, b]

neighbors(c) = []

Graph representations

Adjacency matrix
An adjacency matrix is a data structure for representing a
finite graph. It consists of a square matrix (usually
implemented as an array of arrays). In the simplest case,
the elements of the matrix indicate whether an edge is
present. Elements on the diagonal are defined as zero.

c

b
a

d
a b c d

a 0 1 0 0

b 1 0 0 1

c 0 0 0 1

d 0 1 1 0

Adjacency matrix

In an undirected graph, the adjacency matrix is
symmetric.

c

b
a

d
a b c d

a 0 1 0 0

b 1 0 0 1

c 0 0 0 1

d 0 1 1 0

Adjacency matrix

c

b
a

d
a b c d

a 0 1 0 0

b 1 0 0 1

c 0 0 0 1
d 0 1 1 0

In an undirected graph, the adjacency matrix is
symmetric.

Adjacency matrix

c

b
a

d
a b c d

a 0 1 0 0

b 1 0 0 1
c 0 0 0 1

d 0 1 1 0

In an undirected graph, the adjacency matrix is
symmetric.

Adjacency matrix

c

b
a

d
a b c d

a 0 1 0 0

b 1 0 0 1

c 0 0 0 1

d 0 1 1 0

In an undirected graph, the adjacency matrix is
symmetric.

Adjacency matrix

c

b
a

d
a b c d

a 0 0 0 0

b 1 0 0 1

c 0 0 0 0

d 0 0 1 0

In a directed graph, the adjacency matrix is not symmetric
because edges are directed. A directed edge, from→to, is
conventionally encoded in row-major form.

Adjacency matrix

c

b
a

d
a b c d

a 0 0 0 0

b 1 0 0 1

c 0 0 0 0

d 0 0 1 0

In a directed graph, the adjacency matrix is not symmetric
because edges are directed. A directed edge, from→to, is
conventionally encoded in row-major form.

Adjacency matrix

c

b
a

d
a b c d

a 0 0 0 0

b 1 0 0 1
c 0 0 0 0

d 0 0 1 0

In a directed graph, the adjacency matrix is not symmetric
because edges are directed. A directed edge, from→to, is
conventionally encoded in row-major form.

Adjacency matrix

c

b
a

d
a b c d

a 0 0 0 0

b 1 0 0 1

c 0 0 0 0

d 0 0 1 0

In a directed graph, the adjacency matrix is not symmetric
because edges are directed. A directed edge, from→to, is
conventionally encoded in row-major form.

Adjacency list

An adjacency list is a data structure for representing a finite
graph. It consists of a list of unordered lists.

[[c,d],[d,b],[a,b]]
c

b
a

d

Adjacency list

a: [b]
b: [a,d]
c: [d]
d: [b,c]

There are many variants on adjacency lists. The most
common is the object-oriented adjacency list that stores a
list of adjacent vertices in each vertex object.

c

b
a

d

Adjacency list
Object-oriented adjacency list:

public class Vertex<T> {
 T label;
 List<Vertex<T>> neighbors = new SinglyLinkedList<>();
 …
}

c

b
a

d

(strictly speaking, c and d are references to Vertex objects)

label

neighbors

d

head tail

Vertex

SLL

Node Node

c b Ø

Adjacency list

a: []
b: [a,d]
c: []
d: [c]

This latter version is especially thrifty for directed graphs.

c

b
a

d

Activity

Write down both adjacency matrix and adjacency list
representations for this graph.

c

b
a

d

e

Which one is better for this graph? Why? (think Big-O)

Recap & Next Class

Today:

Next class:

Graph operations

Heaps and priority queues

Graph representations

