CSCI 136:
Data Structures and
Advanced Programming
Lecture 30
Graphs
Instructor: Dan Barowy
Williams

Topics

Graphs

Your to-dos

1. Read before Fri: Bailey, Ch. 13.1.
2. Lab 10 (partner lab), due Tuesday $5 / 10$ by 10pm.

Announcements

1. Final exam: Sunday, May 22, 9:30am in TPL 205.
2. Note that all of the practice quiz solutions are on the course website.

Announcements

Suresh Venkatasubramanian (White House; Brown U)
Thursday, May 5 @ 7:30pm*
Bronfman Auditorium - Wachenheim B11
"Machine Readable": The Power and Limits of Algorithms that are Shaping Society
*Talk open to the public. Private reception to follow for Williams students, faculty and staff.

Friday, May 6 @ 2:35pm*
Computer Science Colloquium - Wege TCL 123
On Equity in Access
*Williams students, faculty and staff only.

Suresh Venkatasubramanian is a professor in computer science and data science, currently at the White House in the Office of Science and Technology Policy. His background is in theoretical computer science, and he's taken a long and winding path through many areas of data science. For almost the past decade, he's been interested in algorithmic fairness, and more broadly the impact of automated decision-making systems in society.

Graphs

Tons of Applications

Nodes = subway stops; Edges = track between stops

Tons of Applications

Tons of Applications

Any guesses as to what this is?
(The Internet, circa 1972.)

Dijkstra's Algorithm

Undirected graph

$$
\mathrm{G}=(\mathrm{V}, \mathrm{E})
$$

Directed graph ADT

A directed graph G is an abstract data type that consists of two sets:

- a set V of vertices (or nodes), and
- a set E of directed edges.

A directed graph can be used to represent any structure in which pairs of elements are "one-way related."
In a directed graph, data can be associated either with a vertex, an edge, or both.

Example: vertex data = people; edge data = "loves".
Directed edges make sense here because... unrequited love. See (countless) examples from popular culture.

Walking a graph

A walk from u to v in a graph $G=(V, E)$ is an alternating sequence of vertices and edges
such that $e_{i}=\left\{v_{i}, v_{i+1}\right\}$ for $i=1, \ldots, k$

- A walk starts and ends with a vertex.
- A walk can travel over any edge and any vertex any number of times.
- If no edge appears more than once, the walk is a path.
- If no vertex appears more than once, the walk is a simple path.

Walking in circles

A closed walk in a graph $G=(V, E)$ is a walk

$$
v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, v_{k-1}, e_{k}, v_{k}
$$

such that $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$

- A circuit is a path where $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$ (no repeated edges)
- A cycle is a simple path where $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$ (no repeated vertices except v_{0})
- The length of a walk is the number of edges in the sequence.

Walking on graphs vs digraphs

In a directed graph, a walk can only follow the direction of the arrows.

There is no directed walk from b to a .

Degree

The degree of a vertex v is the number of edges incident to v.

Denoted: deg (v)

What is the degree of c ? of a ?

Degree on Digraphs

The in-degree of a vertex v is the number of incoming edges incident to v.

Denoted: in-deg (v)

What is the in-degree of c ? of a ?

Degree theorem

For any graph $G=(\mathrm{V}, \mathrm{E})$

$$
\sum_{v \in V} \operatorname{deg}(v)=2|E|
$$

where IEI is the number of edges in G.
Proof: by induction on IEI.
Hint: How does removing an edge change the equation?

Degree on Digraphs

The out-degree of a vertex v is the number of outgoing edges incident to v.

Denoted: out-deg (v)

What is the out-degree of c ? of a ?

Reachability and Connectedness

"Siri, can I drive from Boston to Hong Kong?"
"Siri, can I drive from any point to any other point?"

Connectedness

An undirected graph G is connected if for every pair of vertices u, v in G, v is reachable from u.

c
The set of all vertices reachable from v , along with all edges of G connecting any two of them, is called the connected component of v.
(note that the connected component is itself a graph)

Reachability

A vertex v in G is reachable from vertex u in G if there is a path from u to v.

For an undirected graph G, v is reachable from vertex u iff u is reachable from vertex v .

Is c reachable from d? Yes.

Recap \& Next Class

Today:

Graphs

Next class:

Graph operations
Graph representations

