
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 29
Hash collisions

Topics

Hash collisions

Graphs

Your to-dos

1. Read before Wed: Bailey, Ch. 16.4.
2. Lab 9 (solo lab), due Tuesday 5/3 by 10pm.

Note about lab 9:

You may use the structure5 Hashtable implementation.

Practice Quiz Hash tables

Hash codes
Hashing so important that every Object in Java has a built-in
hash function.

Hash collisions

A hash collision is when two or more distinct keys have
the same hash value.

0 1 2 3 4 5 6 7

A ?

index(“Dan”) → 6

index(“Benedict Cumberbatch”) → 6

Perfect hash function

A perfect hash function is a hash function that ensures that
distinct keys map to distinct indices. I.e., there are no
collisions.

0 1 2 3 4 5 6 7

A

index(“Dan”) → 6

index(“Benedict Cumberbatch”) → 6

Perfect hash function

Problem: It’s pretty darn hard to come up with a perfect hash
function.

1. You need to know all possible keys in advance.

2. If the number of possible keys is large, it is expensive to
compute (O(n2) time) and expensive to store (O(n)
space).

With a good hash table implementation, “imperfect” hash
functions are usually good enough.

Dealing with collisions

There are two approaches to dealing with collisions:

1. Change your hash function.

2. Change your hash table design.

The easier of the two approaches turns out to be #2.

Open addressing

Open addressing is a method for resolving collisions in a
hash table. Collisions are resolved by probing, which is a
predetermined method for searching the hash table (aka a
probe sequence). On insertion, probing finds the first
available bucket. On lookup, probing searches until either
the key is found or an empty space is found.

Linear probing
Suppose our keys are Strings and our hash function is

((int) key.charAt(0)) % A.length

(i.e., a low-quality hash function).

0 1 2 3 4 5 6 7

A

index(“Dan”) → 4

index(“Dirk”) → 4

Dan
-11

key: “Dan”, value: -11

key: “Dirk”, value: 20

collision!

Linear probing

Linear probing works by scanning for h(key) + c × i, where c
is a constant (usually 1) and i is the ith attempt.

0 1 2 3 4 5 6 7

A

index(“Dan”) → 4

index(“Dirk”) → 4

Dan
-11

key: “Dan”, value: -11

key: “Dirk”, value: 20

collision!

retry

Dirk
20

5

Linear probing

Linear probing works by scanning for h(key) + c × i, where c
is a constant (usually 1) and i is the ith attempt.

0 1 2 3 4 5 6 7

A
Dan
-11

key: “Don”, value: -11

Dirk
20

index(“Don”) → 4 5 6

Don
6

Linear probing

Downside: values cluster around collisions.

0 1 2 3 4 5 6 7

A
Dan
-11

key: “Ed”, value: 7

Dirk
20

Don
6

index(“Ed”) → 6

collision!

Likelihood of collisions grows as cluster grows.

Our table is still half empty! This is bad!

7

Linear probing
h(key) + c × i

Changing c helps some.

E.g., c = 2.

0 1 2 3 4 5 6 7

A

index(“Dan”) → 4

index(“Dirk”) → 4

Dan
-11

key: “Dan”, value: -11

key: “Dirk”, value: 20

collision!
Dirk
20

6

Linear probing

Changing c helps some.

But it can also make the problem worse.

0 1 2 3 4 5 6 7

A

index(“Dan”) → 4

index(“Dirk”) → 4

Dan
-11

key: “Dan”, value: -11

key: “Dirk”, value: 20

Dirk
20

6

Don
6

Doug
22

Deb
101 ???

Now we are only

using 1/c buckets!

Linear probing: deletion

Deletions are also problematic.

0 1 2 3 4 5 6 7

A
Dan
-11

Dirk
20

Don
6

Doug
22

delete(“Dan”)

lookup(“Dirk”)

We can no longer find Dirk.

Linear probing: deletion

Deletions are also problematic.

0 1 2 3 4 5 6 7

A
keep  
look  
ing!

Dirk
20

Don
6

Doug
22

delete(“Dan”)

lookup(“Dirk”)

Addressed by leaving a sentinel value at deleted location.

Doesn’t reclaim space until all colliding entries deleted.

External chaining

External chaining is a method for resolving collisions in a
hash table. Collisions are resolved by storing more than one
value in a bucket, e.g., using a list.

External chaining

Same bad hash function:

((int) key.charAt(0)) % A.length

index(“Dan”) → 4

index(“Dirk”) → 4

Dan
-11

key: “Dan”, value: -11

key: “Dirk”, value: 20

collision!

0 1 2 3 4 5 6 7

A

Dirk
20

External chaining: deletion

Deletion is trivial.

0 1 2 3 4 5 6 7

A

Dan
-11

Dirk
20

Complexity

Hash Table Expansion

When a hash table fills up, we should expand, just as with a
Vector. But there are some problems…

Hash Table Expansion

Virtually every hash function relies on the size of the
underlying array to do the hashing. Recall:

int index(K key) {  
 return abs(h(key) % A.length);  
}

When a hash table expands, we usually address this by
rehashing all elements during a copy. Why is this OK?

Hash Table Expansion

Another issue: hash table performance degrades severely as
it fills up.

0 1 2 3 4 5 6 7

A
Dan
-11

Dirk
20

Don
6

Doug
22

Deb
101 ???

Recall that we can have an effectively full hash table even
when there is actually space.

h(key) + c × i

where c = 2

Hash Table Expansion

Therefore, we resize before the table is likely to be full.

Let n be the number of elements stored in a hash table.

Let m be the number of buckets.

Load factor = n / m

When the load factor is reached, the hash table is resized.

Hash Table Expansion

There are two ways to find a good load factor.

1. Careful analysis of the probability of attempting to insert
more than one element into the same bucket, combined
with a preference for acceptable average slowdown.

2. Empirical measurement, combined with a preference for
acceptable average slowdown.

A load factor of 0.7-0.8 is generally accepted to be a good
threshold.

Recap & Next Class

Today:

Next class:

Graph algorithms

Hash collisions

Graphs

