
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 26
Trees, part 4

Topics

More BST methods

Tree balance

Big-O

Implicit BST

Announcements
Spring pre-registration begins Wed, April 27  
and runs until Fri, May 6.

The best way to get into the CS course you
want is to pre-register.

Common “next steps” after CSCI 136:

CSCI 237: Computer Organization  
CSCI 256: Algorithms 
CSCI 334: Principles of Programming Languages

also, some electives.

Practice Quiz

Let’s add find and contains.

Binary Search Tree Should it be a structure?

At home: how is remove implemented?

Binary Search Tree

How might an iterator perform a given traversal?

Binary Search Tree

Hint: use a stack!

Hint: the stack maintains all of the elements that still need to
be traversed.

Tree balance

In the worst case, how long does it take to find an element
in this binary search tree?

e

g

b

a w

s

h

Suppose it is the letter a .

In the worst case, how long does it take to find an element
in this binary search tree?

ea w

s

h

Suppose it is the letter a .

Finding a takes two steps.

g

b

Finding s takes one step.

In the worst case, how long does it take to find an element
in this binary search tree?

ea w

s

h

Suppose it is the letter s .

b

g

In the worst case, how long does it take to find an element
in this binary search tree?

ea wh

b

In the worst case, the time depends on the length of the
longest path.

g

s

e

c

Suppose a friend gives you the following sequence of
values: [a,b,c,d,e,f,g]

And asks you to store them in a binary tree to “make
accessing them fast.”

Is access guaranteed to be fast?

a

b

d

f

g

Ouch!!!

Worst
case: O(n)

But what if your tree maintained the following property on
insertion? (i.e., it is always true)

isBalanced(t):

t is balanced if and only if
•t is empty, or
• all of the following
•isBalanced(t.left) is true and
•isBalanced(t.right) is true and
• | height(t.left) - height(t.right) | ≤ 1

Keep in mind: we know that the worst case has something to
do with height.

But what if your tree maintained the following property on
insertion? (i.e., it is always true)

Clearly a balanced tree.
Yeah, sure, there’s no tree. Details, details…
Time to access an element ~ 0 steps

But what if your tree maintained the following property on
insertion? (i.e., it is always true)

Balanced? Yes.

Max time to access an element ~ 0 steps

g

But what if your tree maintained the following property on
insertion? (i.e., it is always true)

Balanced? Yes.

Max time to access an element: 1 step

b

g

But what if your tree maintained the following property on
insertion? (i.e., it is always true)

Balanced? Yes.

Max time to access an element: 1 step

b s

g

Changes nothing.

a

But what if your tree maintained the following property on
insertion? (i.e., it is always true)

Balanced? Yes.
Max time to access an element: 2 steps

b s

g

wa

But what if your tree maintained the following property on
insertion? (i.e., it is always true)

Balanced? Yes.
Max time to access an element: 2 steps

b s

g

e wa

But what if your tree maintained the following property on
insertion? (i.e., it is always true)

Balanced? Yes.
Max time to access an element: 2 steps

b s

g

he wa

But what if your tree maintained the following property on
insertion? (i.e., it is always true)

Balanced? Yes.
Max time to access an element: 2 steps

b s

g

This looks like time = log2(# nodes)

nodes max time

1 0 steps
2 1 step
3 1 step
4 2 steps
5 2 steps
6 2 steps
7 2 steps
8 3 steps

… …

But does this hold up?

Clearly not a balanced tree.

e

c

a

b

d

f

g

nodes max time

7 6 steps

Logarithmic worst-case access time has something to do
with the compactness of a tree; height matters.

BST Big-O

Worst case time is O(log2(n)) for a balanced binary tree.

Why?

What is min. binary tree height needed to store n nodes?

Cute theorem: height ≥ ⌊log2(n)⌋

Intuition: log2(n) is the number of times you can divide n
nodes in halves.

1

2

3

Implicit Data Structures

Recall: binary search tree

A binary search tree is a binary tree that maintains the
binary search property as elements are added or removed.
In other words, the key in each node:

• must be ≥ any key stored in the left subtree, and
• must be ≤ any key stored in the right subtree.

As with other ordered structures, order is maintained on
insertion.

BST is an ADT

Do we actually need a tree to store a tree?

No. We can use an implicit data structure instead.

Implicit data structure

A implicit data structure or space-efficient data structure
is a data structure that stores only necessary information.
Instead of explicitly representing relationships between
elements of the structure using references, an implicit
structure uses the relative positions of elements.

Implicit binary tree
a

b c

d e f g

0 1 2 3 4 5 6 7

a b c d e f g

Implicit binary tree
a

b c

d e f g

0 1 2 3 4 5 6 7

a b c d e f g

left child right child

Implicit relationship

0 1 2 3 4 5 6 7

a b c d e f g

left child right child

leftChild(i) = 2 × i + 1

rightChild(i) = 2 × i + 2

parent(i) = ⌊(i − 1) ∕ 2)⌋

I will post an implementation on the course website.

Implicit Binary Search Tree

Tree balance

BST asymptotics

Implicit BST

Recap & Next Class

Today:

Next class:
Maps

