	Topics
CSCI 136: Data Structures and Advanced Programming	Binary tree implementation Tree height
Lecture 24	
Trees, part 2	
Instructor: Dan Barowy Williams	
Your to-dos	Tree ADT
 Read before Fri: reading on balanced trees. Lab 8 (solo lab), due Tuesday 4/26 by 10pm. 	 A tree is a recursive data structure that stores information hierarchically. A tree is either: empty (i.e., Ø), or a node containing a value and references to one or more trees. The empty tree: A non-empty binary tree:

Binary Tree Height

Let's think about some corner cases.

What is the height of a tree with just one node?

The **height** of a tree is the length of the longest path between the root and any leaf.

Height of tree = 0

Binary Tree Height

Let's think about some corner cases.

What about the empty tree?

The **height** of a tree is the length of the longest path between the root and any leaf.

Height of tree = -1

Binary Tree Height

Here's a more formal definition.

The **height** of a tree is defined as:

- -1 if the tree is empty, or
- height(left) or height(right), whichever is bigger, +1

empty tree: -1

just a root: 0

any other tree: longest path

Binary Tree Height

How might we implement getHeight()?

Height $1 - 2^4 \times 2$ $1 - 2^4 \times 2$ 2 - 4

Recap & Next Class

Today:

Binary tree implementation

Tree height

Next class:

Binary tree traversals

Binary search trees

Tree balance

Asymptotic analysis