CSCI 136:
Data Structures
and
Advanced Programming
Lecture 23
Trees, part 1
Instructor: Dan Barowy
Williams

Topics

Tree terminology

Announcements

CSCI 136 final exam
Sunday, May 22 at 9:30am
Thompson Physics Lab 205

Terminology

The topmost node is called the root.

Tree ADT

A tree is a recursive data structure that stores information hierarchically. A tree is either:
-empty (i.e., Ø), or

- a node containing a value and references to one or more trees.

The empty tree:
\varnothing

Properties of trees

\# edges: a tree having n vertices always has $\mathrm{n}-1$ edges.

Terminology

Any node that is not a leaf is an interior node.

Terminology

The nodes at the bottom of a tree are called leaves.

Terminology

A node may have children.

Terminology

A node that has children is called the parent of those children.

Terminology

A node may have children.

Terminology

For a given node, all of the nodes above it are called ancestors.

Properties of trees

Single ancestor: every node in a tree has at most one ancestor.

Properties of trees

Subtrees: the descendents of every tree (except the empty tree) are also trees.

Terminology

For a given node, all of the nodes below it are called descendants.

Terminology

The degree of a tree is the maximum number of children had by any node.

Degree of this tree: 2
Degree 2 trees are common: we call them binary trees.

Properties of trees

Cycle-free: no path will ever revisit the same node.

Terminology

A path is a sequence of edges between two nodes.

Terminology

The length of a path is the number of edges in the path.

Length $=2$

Terminology

The height of node n is the length of the longest path between n and any leaf.

Height of $n=1$

Terminology

The depth of node n is the length of the longest path between the root and n.

Depth of $\mathrm{n}=1$

Terminology

The height of a tree is the length of the longest path between the root and any leaf.

Height of tree $=2$

Terminology

The level of any node is its depth.

Terminology

The depth of $\mathrm{n}+$ the height of $\mathrm{n} \leq$ the height of the tree.

(depth of $\mathrm{n}: 1)+($ height of $\mathrm{n}: 0) \leq($ height of tree: 2$)$

Properties of trees

Directed or undirected: trees can be either directed, meaning that traversals can only happen in one direction, or undirected, meaning that traversals can happen in any direction.

The tree shown here is directed.
We can represent an undirected tree using back edges.

Terminology

A complete tree of height h is a full tree with zero or more rightmost leaves of level h removed.

Is a list a tree?

Yes, a list is a tree whose nodes have degree 1.
We call such trees degenerate.

Today:

Tree terminology

Next class:

Binary tree implementation
Tree height

