CSCI 136: Data Structures and Advanced Programming
Lecture 22
Even more iterators / trees

Instructor: Dan Barowy
Williams

Topics

• Talent
• Reverse iterator
• Trees

Your to-dos

1. Read before Mon: Bailey, Ch 14-14.1, 14.3.
2. Lab 7 (partner lab), due Tuesday 4/19 by 10pm.
Think of someone you know who is talented.

Were they born with better abilities than you?

No universal, reliable measure of innate ability.

- The relation of IQ to exceptional performance is rather weak in many domains, including music (Shuter-Dyson, 1982) and chess (Doll & Maye, 1987).

- For scientists, engineers, and medical doctors that complete the required education and training, the correlations between ability measures and occupational success are only around 0.2, accounting for only 4% of the variance (Baird, 1985).

- In a review of more than one hundred studies, Ghiselli (1966) found the average correlation between success-on-the-job measuring and aptitude-test scores to be 0.19.

- In summary, the search for stable heritable characteristics that could predict or at least account for the superior performance of eminent individuals has been surprisingly unsuccessful.

Takeaway: “innate ability” is probably a myth.

Despite years (>100) of effort, scientists have never identified a universal, reliable measure of innate ability.

What factor does matter? Practice.

Binet (Varon, 1935) started out using tests of basic perceptual and cognitive capacities to measure IQ, but found large practice effects, which were later documented by Gibson (1969).
But mere repetition is not enough.

Bryan and Harter (1897, 1899) identified plateaus in skill acquisition, when for long periods subjects seemed unable to attain further improvements.

With mere repetition, improvement of performance was often arrested at less than maximal levels, and further improvement required effortful reorganization of the skill.

Keller (1958) later showed that these plateaus were not an inevitable characteristic of skill acquisition, but could be avoided by different and better training methods.

Study tip

Experts practice deliberately.

We view elite performance as the product of maximal efforts to improve performance in a domain through an optimal distribution of deliberate practice. This view provides us with unique insights into the potential for and limits to modifying the human body and mind. Many characteristics, traditionally believed to be fixed, can adapt and change in response to intense practice sustained for years.

Deliberate practice is purposeful and systematic practice requiring focused attention and is conducted with the specific goal of improving performance.

Deliberate practice is exhausting.

Study tip

How does one sustain deliberate practice?

Our empirical studies show that experts carefully schedule deliberate practice and limit its duration to avoid exhaustion and burnout.

The learning algorithm:

1. Start early.
2. Focus solely on learning task. (i.e., no Instagram)
3. Stop after some time period. (~1 hr)
4. Repeat later. (e.g., the next day)

Quiz
A bit iterator

Suppose we want to do the following:

On each iteration, get the next most significant bit, starting initially with the least significant bit.

BIterator to the rescue.

Trees

Information is often hierarchical.

Trees facilitate encoding such information on a computer.
A list is a recursive data structure that stores information sequentially. A list is either:

- empty (i.e., Ø) or
- a node containing a value and a reference to a list.

The empty list: Ø

List of length 1:

List of length 3:

A **tree** is a recursive data structure that stores information hierarchically. A tree is either:

- **empty** (i.e., \(\emptyset\)), or
- a **node** containing a **value** and references to one or more **trees**.

The empty tree:

\[
\emptyset
\]

A non-empty **binary** tree:

\[
\begin{array}{c}
\text{b} \\
\text{a} \quad \emptyset \quad \emptyset \\
\text{c} \quad \emptyset \quad \emptyset
\end{array}
\]
Recap & Next Class

Today:
- Talent
- Reverse Iterator
- Tree ADT

Next class:
- Terminology
- Implementation