
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 21
More iterators

Topics

•Iterators
•Integer representation

Your to-dos

1. Read before Fri: Bailey, Ch 12.6-12.9.
2. Lab 7 (partner lab), due Tuesday 4/19 by 10pm.

Announcements

•ACM TechTalk: “Visual Data Analysis: Why?
When? How?” 
Organized by Prof. Kelly Shaw and CoSSAC. 
Wednesday, April 13 from 7-7:45pm in TBL 211. 
“Extra special snacks” provided by CoSSAC
afterward in the Eco Cafe.

•This Friday’s colloquium: CS pre-registration info
session.

Practice quiz Integer representation

The bits of an integer

An integer is represented in computer memory as a
sequence of bits, each having a value of either 0 or 1. This
representation is called binary.

Binary is number system where each digit can take one of
two values; i.e., the base of the system is 2.

You are probably more familiar with the base 10 number
system, aka decimal.

Any integer can be represented in either system.

Java int

The int data type in Java has 32 bits.

00000000 00000000 00000000 00010111

is the number 23.

(00000000000000000000000000010111)₂
= (0 × 2³¹) + (0 × 2³⁰) + (0 × 2²⁹) + (0 × 2²⁸)
+ (0 × 2²⁷) + (0 × 2²⁶) + (0 × 2²⁵) + (0 × 2²⁴)
+ (0 × 2²³) + (0 × 2²²) + (0 × 2²¹) + (0 × 2²⁰)
+ (0 × 2¹⁹) + (0 × 2¹⁸) + (0 × 2¹⁷) + (0 × 2¹⁶)
+ (0 × 2¹⁵) + (0 × 2¹⁴) + (0 × 2¹³) + (0 × 2¹²)
+ (0 × 2¹¹) + (0 × 2¹⁰) + (0 × 2⁹) + (0 × 2⁸)
+ (0 × 2⁷) + (0 × 2⁶) + (0 × 2⁵) + (1 × 2⁴)
+ (0 × 2³) + (1 × 2²) + (1 × 2¹) + (1 × 2⁰)
= (23)₁₀

Bitwise Operations

We can use bitwise operations to manipulate
the 1s and 0s in the binary representation
• Bitwise ‘and’: &
• Bitwise ‘or’: |

Also useful: bit shifts
• Bit shift left: <<
• Bit shift right: >>

Given two integers a and b, the bitwise or
expression a | b returns an integer s.t.

• At each bit position, the result has a 1 if that bit
position had a 1 in EITHER a OR b
• 3 | 6 = ?

& and |

011 | 110 = 111

Given two integers a and b, the bitwise and
expression a & b returns an integer s.t.

• At each bit position, the result has a 1 if that bit
position had a 1 in BOTH a AND b
• 3 & 6 = ?

011 & 110 = 010

Given two integers a and i, the expression
(a << i) returns (a * 2i)

• Why? It shifts all bits left by i positions
• 1 << 4 = ?

>> and <<

00001 << 4 = 10000
Given two integers a and i, the expression
(a >> i) returns (a / 2i)

• Why? It shifts all bits right by i positions
• 1 >> 4 = ?

00001 >> 4 = 00000

• 97 >> 3 = ?

1100001 >> 3 = 1100

Iterators

Iteration

Iteration is the repetition of a process in order to generate
a (possibly unbounded) sequence of outcomes. Each
repetition of the process is a single iteration, and the
outcome of each iteration is then the starting point of the
next iteration.

Example.

List<Double> ls = new SinglyLinkedList<>();
// … initialize ls …
double sum = 0.0;
for (double d : ls) {
sum += d;

}

sum 0

100 101 102 Ø

d 0

Example.

List<Double> ls = new SinglyLinkedList<>();
// … initialize ls …
double sum = 0.0;
for (double d : ls) {
sum += d;

}

head

100 101 102 Ø

current

Iterable<Double>

sum 0

d 0

Example.

List<Double> ls = new SinglyLinkedList<>();
// … initialize ls …
double sum = 0.0;
for (double d : ls) {
sum += d;

}

head

100 101 102 Ø

current

Iterable<Double>

sum 100

d 100

Example.

List<Double> ls = new SinglyLinkedList<>();
// … initialize ls …
double sum = 0.0;
for (double d : ls) {
sum += d;

}

head

100 101 102 Ø

current

Iterable<Double>

sum 100

d 100

Example.

List<Double> ls = new SinglyLinkedList<>();
// … initialize ls …
double sum = 0.0;
for (double d : ls) {
sum += d;

}

head

100 101 102 Ø

current

Iterable<Double>

sum 201

d 101

Example.

List<Double> ls = new SinglyLinkedList<>();
// … initialize ls …
double sum = 0.0;
for (double d : ls) {
sum += d;

}

head

100 101 102 Ø

current

Iterable<Double>

sum 201

d 101

Example.

List<Double> ls = new SinglyLinkedList<>();
// … initialize ls …
double sum = 0.0;
for (double d : ls) {
sum += d;

}

head

100 101 102 Ø

current

Iterable<Double>

sum 303

d 102
Ø

Example.

List<Double> ls = new SinglyLinkedList<>();
// … initialize ls …
double sum = 0.0;
for (double d : ls) {
sum += d;

}

head

100 101 102 Ø

current

Iterable<Double>

sum 303

d 102
Ø

“Iteration is terminated!”

What’s an Iterator<T>?

It’s a stateful object that lets you
iterate through a data structure.

public interface Iterator<E>
{
 boolean hasNext();
 E next();
 …
}

A bit iterator

Suppose we want to do the following:

On each iteration, get the next most significant bit, starting
initially with the least significant bit.

BIterator to the rescue.

Iterators

Number representations

Tree ADT

Recap & Next Class

Today:

Next class:

