
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 18
Linear structures

Topics

•Stack data structure
•Queue ADT
•Queue data structure

Your to-dos

1. Lab 6 (partner lab), due Tuesday 4/12 by 10pm.
a. (Anti-)partner form if you have feelings.

2. Read before Fri: Bailey, Ch 8-8.3.

Announcements
Colloquium on Friday.

Friday, April 8 @ 2:35pm
Wege Hall – TCL 123
Perception and Context in Data Visualization
Jordan Crouser, Smith College
Visual analytics is the science of combining interactive visual interfaces
and information visualization techniques with automatic algorithms to
support analytical reasoning through human-computer interaction.
People use visual analytics tools and techniques to synthesize
information and derive insight from massive, dynamic, ambiguous, and
often conflicting data… and we exploit all kinds of perceptual tricks to
do it! In this talk, we’ll explore concepts in decision-making, human
perception, and color theory as they apply to data-driven
communication. Whether you’re an aspiring data scientist or you’re just
curious about the mechanics of how data visualization works under the
hood, stop by and take your pre-attentive processing for a spin.

Announcements

Please consider being a TA next semester 
(especially for this class!) 

 
Applications due Friday, April 22. 

 
https://csci.williams.edu/tatutor-application/

Stack ADT

Stack ADT

A stack is an abstract data type that stores a collection of
any type of element. A stack restricts which elements
are accessible: elements may only be added and removed
from the "top" of the collection. The "push" operation
places an element onto the top of the stack while a "pop"
operation removes an element from the top.

Stack implementations

StackArray

A StackArray is a stack implemented using an array for
element storage.

Pros: push and pop are O() operations.

Cons:

1

data structure has a maximum capacity.

Stack implementations
StackVector

A StackVector is a stack implemented using a Vector for
element storage.

Pros: push and pop are amortized O(1) operations. There is
no maximum capacity.

Cons: Most of the time, ops take O(1) time, but occasionally--
when the underlying array needs to grow--an O(n) cost is
incurred. This may be fine for most applications, but if the
application cannot tolerate wide variation in time, this is a bad
choice.
Also, unless the underlying array is completely full, Vectors
waste some space.

Stack implementations
StackList

A StackList is a stack implemented using a List (usu. SLL)
for element storage.

Pros: push and pop are O(1) operations. There is no
maximum capacity, and no wasted space. push and pop
costs are predictable (always the same), unlike StackVector.

Cons: because of the way computer hardware is
implemented, a StackList's constant-time cost is likely to be
much higher than a StackVector's. So a StackList's
performance may be more predictable than a StackVector,
but it will likely be slower on average.

Queue ADT

A queue is an abstract data type that stores a collection of
any type of element. A queue restricts which elements
are accessible: elements may only be added to the "end" of
the collection and elements may only be removed from the
"front" of a collection. The "enqueue" operation places an
element at the end of a queue while a "dequeue" operation
removes an element from the front.

Queue ADT

Queue ADT

Also sometimes referred to as a FIFO: “first in, first out.”

We also frequently include a "peek" operation that lets us
look at an element on the top of a queue without removing it,
and "size" and “isEmpty" operations that let us check how
many elements are stored and whether a queue stores zero
elements, respectively.

(a stack would be an annoying way to process a line at
Starbucks!)

Frequently used as a buffer to hold work to do later.

Queue implementations

QueueArray

A QueueArray is a queue implemented using an array for
element storage.

Pros: enqueue and dequeue are O() operations.

Cons:

1

data structure has a maximum capacity.

Queue implementations
QueueVector

A QueueVector is a queue implemented using a Vector for
element storage.

Pros: enqueue and dequeue are amortized O(1) operations.
There is no maximum capacity.

Cons: Most of the time, they take O(1) time, but occasionally--
when the underlying array needs to grow--an O(n) cost is
incurred. This may be fine for most applications, but if the
application cannot tolerate wide variation in time, this is a bad
choice. Also, unless the underlying array is completely full,
Vectors waste some space.

Queue implementations
QueueList

A QueueList is a queue implemented using a List (usu. DLL
or CL) for element storage.

Pros: enqueue and dequeue are O(1) operations. There is no
maximum capacity. enqueue and dequeue costs are
predictable (always the same), unlike QueueVector.

Cons: because of the way computer hardware is
implemented, a QueueList's constant-time cost is likely to be
much higher than a QueueVector's. So a QueueList's
performance may be more predictable than a QueueVector,
but it will likely be slower on average.

Queue ADT

Data structure choices for linear structures

Search

Iterators

Recap & Next Class

Today:

Next class:

