
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 17
Linear structures

Topics

•Linear ADTs
•Stack ADT
•Queue ADT

Your to-dos

1. Lab 6 (partner lab), due Tuesday 4/12 by 10pm.
2. Read before Wed: Bailey, Ch 10.

Announcements
Colloquium on Friday.

Friday, April 8 @ 2:35pm
Wege Hall – TCL 123
Perception and Context in Data Visualization
Jordan Crouser, Smith College
Visual analytics is the science of combining interactive visual interfaces
and information visualization techniques with automatic algorithms to
support analytical reasoning through human-computer interaction.
People use visual analytics tools and techniques to synthesize
information and derive insight from massive, dynamic, ambiguous, and
often conflicting data… and we exploit all kinds of perceptual tricks to
do it! In this talk, we’ll explore concepts in decision-making, human
perception, and color theory as they apply to data-driven
communication. Whether you’re an aspiring data scientist or you’re just
curious about the mechanics of how data visualization works under the
hood, stop by and take your pre-attentive processing for a spin.

Announcements

Midterm exams back this week Practice Quiz

Abstract Data Type

An abstract data type is a mathematical formulation of a
data type. ADTs abstract away accidental properties of data
structures (e.g., implementation details, programming
language). Instead, ADTs contain only essential properties
and are concisely defined by their logical behavior over a
set of values and a set of operations.

In an ADT, precisely how data is represented on a computer
does not matter.

By contrast: data structure

A data structure is the physical form of a data type, i.e., it
is an implementation of an ADT. Generally, data structures
are designed to efficiently support the logical operations
described by the ADT.

For data structures, precisely how data is represented on a
computer matters a lot. Simple data structures are often
composed of simple representations, like primitives, while
more complex data structures are composed of other data
structures.

ADT example: Linked List

A linked list is a linear collection of data elements, whose
order is not necessarily given by their placement in memory.
Each element is stored in a node that points to the next
node. Elements may store any type of value. A list
supports inserting, searching for, and deleting any value
in a list, although not necessarily efficiently.

Linear ADT

A linear ADT is one that presents elements in a sequence,
even if the elements are not actually stored that way.

We will talk about two today: stack and queue.

In a linear ADT, adding and removing elements is
constrained, meaning that the structure can only be
modified according to certain rules.

Stack ADT

A stack is an abstract data type that stores a collection of
any type of element. A stack restricts which elements
are accessible: elements may only be added and removed
from the "top" of the collection. The "push" operation
places an element onto the top of the stack while a "pop"
operation removes an element from the top.

Stack ADT

Stack ADT

Also sometimes referred to as a LIFO: “last in, first out.”

We also frequently include a "peek" operation that lets us
look at an element on the top of a stack without removing it,
and "size" and “isEmpty" operations that let us check how
many elements are stored and whether a stack stores zero
elements, respectively.

Stack ADT

Interesting history: first
appeared in print in a paper
by Alan Turing (1946).

Unclear i f he actual ly
invented it.

push = bury,
pop = unbury.

structure5 Stack implementations Application: Arithmetic

A computer can perform arithmetic using a stack.

E.g., 1 + 2 * 3 = 7

Small problem: order of operations in infix arithmetic
depends on the operations themselves.

In postfix arithmetic, order is always the same: left to right

E.g., 1 2 3 * + (note: fixed the confusing class example)

Once in this form, processing is easy. (Example)

Activity: Arithmetic
Convert infix to postfix: x*y+z*w

1. Add parens to preserve order of operations:
 ((x*y)+(z*w))
2. Move all operators to the end of each parenthesized
expression:
 ((xy*)(zw*)+)
3. Remove parens:
 xy*zw*+

Evaluate these using a stack:

1. 4 + 1 * 8
2. 5 * (6 + 2) - 12 / 4

Cool application: backtracking search

Cool application: backtracking search

Linear ADTs

Stack

Queue, etc.

Recap & Next Class

Today:

Next class:

