
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 16
Sorting, part 4

Topics

•Sort stability
•Merge sort
•Quick sort

Your to-dos

1. Lab 5 (solo lab), due Tuesday 3/15 by 10pm.
2. Reading: review (or catch up on!) readings.
3. Have a look at the practice exam, posted on the 

website.

Announcements

1. Midterm review: Wed, March 16 in class. 
(come prepared to ask questions)

2. Midterm: in lab next week, Thursday, March 17.
3. No class: Fri, March 18.



Practice Quiz

Sort stability

Suppose we are sorting on just the first letter.

Then ab ≮ aa and ab ≯ aa. 

Note also the positions of these elements in A: 0 < 2. 

ab cd aa bb

0 1 2 3

AUnsorted:

ab aa bb cd

0 1 2 3

ASorted:

This sort is stable, because the relative
order of ab and aa is the same. 

Sort stability

A sort is stable if any two equal (or incomparable) objects 
retain their relative order in a sorted order as in an 
unsorted order.

Sort stability

More formally,

Let A be an array, and i and j indices in that array, s.t. i ≠ j.

If i < j, A[i] ≮ A[j], A[i] ≯ A[j], and πS(A,i) < πS(A,j) then 
sorting algorithm S is stable.

Let πS(A,i) be a function that returns the updated index of i 
after sorting A with sorting algorithm S. 

Note: people often say A[i] = A[j] instead of A[i] ≮ A[j], A[i] 
≯ A[j] even when A[i] and A[j] may be incomparable.



Merge sort Merge sort

Invented by John von Neumann in 1948.

Merge sort

Merge sort is a sorting algorithm that uses the divide and 
conquer technique. It works by recursively partitioning data 
until no further partitioning is possible, then by merging 
elements of the partitions back together in sorted order.

Merge sort



Merge sort Merge sort

Merge sort Merge sort



Merge sort Merge sort

Merge sort

Merge sort takes O(n × log2n) time in the worst case 
(usually written O(n log n)).

Merge sort takes O(n log n) time in the best case.

Merge sort takes O(n) auxiliary space because each step 
makes a copy of the data being sorted.

I.e., merge sort is not an in-place sort.  It is out-of-place.

Time complexity proof sketch

Merge takes O(n) because we have to copy n/2 elements 
into an array of size n twice.

Divide takes O(1) because we are just picking a midpoint.

We divide O(log n) times and merge O(log n) times.

Therefore, the algorithm is O(n log n).



Time complexity
cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

… … … … … … … …

c c c c c c c c{n

c is cost of 
copy and 
merge for each 
element (i.e., to 
sort an array of 
size 1)

cn = O(n)

log2n = O(log n)

cn/2×2 = O(n)

cn = O(n)

c×n/4×4 = O(n)

O(log n)×O(n) = O(n log n)

num elements 
in each array

num arrays

Space complexity

At first glance, this looks like O(n log n) space!

Why isn’t it?

Because after merging, we can discard old arrays
(i.e., garbage collect)  and reuse that space.

n/2×2 = O(n)

n/4×4 = O(n)

n = O(n)

num elements 
in each arraynum arrays

Quicksort Quicksort

Invented by Tony Hoare in 1959.

One of my all-time favorite algorithms.



Quicksort
Quicksort is a sorting algorithm that uses the divide and 
conquer technique. It works by partitioning the data into two 
arrays around a pivot (a fixed element, like the first 
element).

Performing this procedure recursively on the left and right 
subarrays until there is nothing left to partition guarantees a 
sorted array.

It swaps data so that one array contains elements smaller 
than the pivot and the other array contains elements 
larger than the pivot. This ensures that, at each step, the 
pivot is in the correct position in the array.

Quicksort partition step

Quicksort recursive steps Quicksort

Base case (array of size 1): the pivot is trivially sorted. 

Unlike merge sort, quick sort does not need to combine 
sub arrays after splitting—the entire array is 
guaranteed to be sorted upon reaching the base 
case, and since the sort is done in-place no copying is 
required.

Inductive case: Assume that the left and right subarrays are 
sorted.  Since the pivot is the middlemost element, then 
everything to the left is smaller and everything to the right is 
bigger.  Therefore, the entire array is sorted.



Quicksort

Quicksort takes O(n2) time in the worst case.  This case is 
improbable, and highly improbable as n→∞.

Quicksort takes O(n log n) time in the best case.

I.e., quicksort is an in-place sort. Therefore it needs no 
auxiliary space. As a result, quicksort is almost always 
chosen over merge sort in any application where all the 
data can fit into RAM.

Quicksort takes O(n log n) time in the average case.

Quicksort time proof sketch
In the worst case, we repeatedly choose the worst pivot 
(either the min or max value in the array).  This means that 
we need to do n-1 swaps.

In the best case, we always happen to choose the 
middlemost value as a pivot. I.e., the two subarrays are the 
same size. The rest of the proof looks just like the proof for 
merge sort where we intentionally choose two subarrays of 
the same size.

Since there are n worst case choices of pivots, in the worst 
case, we do n-1 swaps n times. O(n2).

If you’re thinking that quicksort’s best case is the same as 
merge sort’s worst case, remember that quicksort is in-
place.

Sorting Wrapup

Time Space
Bubble Worst: O(n2)

Best: O(n) - if  “optimized”
O(n) : n + c

Insertion Worst: O(n2) 
Best: O(n)

O(n) : n + c

Selection Worst = Best: O(n2) O(n) : n + c

Merge Worst = Best: O(n log n) O(n) : 2n + c

Quick Average = Best: O(n log n)
Worst: O(n2)

O(n) : n + c

31

Recap & Next Class

•Sort stability
•Merge sort
•Quick sort

Today:

Next class:

•Midterm review


