
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 16
Sorting, part 4

Topics

•Sort stability
•Merge sort
•Quick sort

Your to-dos

1. Lab 5 (solo lab), due Tuesday 3/15 by 10pm.
2. Reading: review (or catch up on!) readings.
3. Have a look at the practice exam, posted on the

website.

Announcements

1. Midterm review: Wed, March 16 in class. 
(come prepared to ask questions)

2. Midterm: in lab next week, Thursday, March 17.
3. No class: Fri, March 18.

Practice Quiz

Sort stability

Suppose we are sorting on just the first letter.

Then ab ≮ aa and ab ≯ aa.

Note also the positions of these elements in A: 0 < 2.

ab cd aa bb

0 1 2 3

AUnsorted:

ab aa bb cd

0 1 2 3

ASorted:

This sort is stable, because the relative
order of ab and aa is the same.

Sort stability

A sort is stable if any two equal (or incomparable) objects
retain their relative order in a sorted order as in an
unsorted order.

Sort stability

More formally,

Let A be an array, and i and j indices in that array, s.t. i ≠ j.

If i < j, A[i] ≮ A[j], A[i] ≯ A[j], and πS(A,i) < πS(A,j) then
sorting algorithm S is stable.

Let πS(A,i) be a function that returns the updated index of i
after sorting A with sorting algorithm S.

Note: people often say A[i] = A[j] instead of A[i] ≮ A[j], A[i]
≯ A[j] even when A[i] and A[j] may be incomparable.

Merge sort Merge sort

Invented by John von Neumann in 1948.

Merge sort

Merge sort is a sorting algorithm that uses the divide and
conquer technique. It works by recursively partitioning data
until no further partitioning is possible, then by merging
elements of the partitions back together in sorted order.

Merge sort

Merge sort Merge sort

Merge sort Merge sort

Merge sort Merge sort

Merge sort

Merge sort takes O(n × log2n) time in the worst case
(usually written O(n log n)).

Merge sort takes O(n log n) time in the best case.

Merge sort takes O(n) auxiliary space because each step
makes a copy of the data being sorted.

I.e., merge sort is not an in-place sort. It is out-of-place.

Time complexity proof sketch

Merge takes O(n) because we have to copy n/2 elements
into an array of size n twice.

Divide takes O(1) because we are just picking a midpoint.

We divide O(log n) times and merge O(log n) times.

Therefore, the algorithm is O(n log n).

Time complexity
cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

… … … … … … … …

c c c c c c c c{n

c is cost of
copy and
merge for each
element (i.e., to
sort an array of
size 1)

cn = O(n)

log2n = O(log n)

cn/2×2 = O(n)

cn = O(n)

c×n/4×4 = O(n)

O(log n)×O(n) = O(n log n)

num elements
in each array

num arrays

Space complexity

At first glance, this looks like O(n log n) space!

Why isn’t it?

Because after merging, we can discard old arrays
(i.e., garbage collect) and reuse that space.

n/2×2 = O(n)

n/4×4 = O(n)

n = O(n)

num elements
in each arraynum arrays

Quicksort Quicksort

Invented by Tony Hoare in 1959.

One of my all-time favorite algorithms.

Quicksort
Quicksort is a sorting algorithm that uses the divide and
conquer technique. It works by partitioning the data into two
arrays around a pivot (a fixed element, like the first
element).

Performing this procedure recursively on the left and right
subarrays until there is nothing left to partition guarantees a
sorted array.

It swaps data so that one array contains elements smaller
than the pivot and the other array contains elements
larger than the pivot. This ensures that, at each step, the
pivot is in the correct position in the array.

Quicksort partition step

Quicksort recursive steps Quicksort

Base case (array of size 1): the pivot is trivially sorted.

Unlike merge sort, quick sort does not need to combine
sub arrays after splitting—the entire array is
guaranteed to be sorted upon reaching the base
case, and since the sort is done in-place no copying is
required.

Inductive case: Assume that the left and right subarrays are
sorted. Since the pivot is the middlemost element, then
everything to the left is smaller and everything to the right is
bigger. Therefore, the entire array is sorted.

Quicksort

Quicksort takes O(n2) time in the worst case. This case is
improbable, and highly improbable as n→∞.

Quicksort takes O(n log n) time in the best case.

I.e., quicksort is an in-place sort. Therefore it needs no
auxiliary space. As a result, quicksort is almost always
chosen over merge sort in any application where all the
data can fit into RAM.

Quicksort takes O(n log n) time in the average case.

Quicksort time proof sketch
In the worst case, we repeatedly choose the worst pivot
(either the min or max value in the array). This means that
we need to do n-1 swaps.

In the best case, we always happen to choose the
middlemost value as a pivot. I.e., the two subarrays are the
same size. The rest of the proof looks just like the proof for
merge sort where we intentionally choose two subarrays of
the same size.

Since there are n worst case choices of pivots, in the worst
case, we do n-1 swaps n times. O(n2).

If you’re thinking that quicksort’s best case is the same as
merge sort’s worst case, remember that quicksort is in-
place.

Sorting Wrapup

Time Space
Bubble Worst: O(n2)

Best: O(n) - if “optimized”
O(n) : n + c

Insertion Worst: O(n2)
Best: O(n)

O(n) : n + c

Selection Worst = Best: O(n2) O(n) : n + c

Merge Worst = Best: O(n log n) O(n) : 2n + c

Quick Average = Best: O(n log n)
Worst: O(n2)

O(n) : n + c

31

Recap & Next Class

•Sort stability
•Merge sort
•Quick sort

Today:

Next class:

•Midterm review

