Topics

CSCI 136:
Data Structures

and

Advanced Programming -glgl\gcc:icz) r\:v:osrf[)rt data of any type? Comparators.

Lecture 15 -Insertion sort

Sorting, part 3

Instructor: Dan Barowy
Williams

Your to-dos

1. Lab 5 (solo lab), due Tuesday 3/15 by 10pm. Quiz
2. Reading: review (or catch up!) readings.




What if...

... you wanted to sort arbitrary objects?

What'’s problematic with our bubble sort implementation?

(code)

Comparators

Comparators

We frequently have to sort data that is more complex than

simple numbers.

For example, suppose we need to sort objects, like a

People][].

How do we define an order so that we can easily sort this?

compare to the rescue.




Comparator interface

The Comparator interface defines the method compare
that lets us compare two elements of the same type.

public int compare(T ol, T 02)

Returns any int < 0 when ol is “less than” o2.
Returns any int > 0 when o2 is “less than” ol.

Returns 0 otherwise.

(code)

Selection sort

Selection sort is an in-place sorting algorithm in which
the largest element is found during each pass. Selection
sort makes n-1 passes through the data, performing
pairwise comparisons of elements using <. Unlike bubble
sort, selection sort makes at most 1 swap during a pass.

Selection sort maintains the invariant that the rightmost n-
numUnsorted elements are sorted.

l.e., selection sort builds a sorted order on the right.

Selection sort intuition

Select & exchangey—

40 2 1 43 3(65)0 158 3 42 4

r—

40 2 1 43 3 4 0 -1(58)3 42[65
/\
1 »

40 2 1(43)3 4 0 -1 42 3|58 65

40 2 1 3 3 4 0 —1(42)43 58 65

(40) 2

1 3 3 4 0 -1

42 43 58 65




Selection sort

public static void selectionSort(int datal[l, int n)
// pre: 0 <= n <= data.length
// post: values in data[0..n-1] are in ascending order
{
int numUnsorted = n;
int index; // general index
int max; // index of largest value
while (numUnsorted > 0)
{
// determine maximum value in array
max = 0;
for (index = 1; index < numUnsorted; index++)
{
if (datalmax] < datal[index]) max = index;
}
swap (data,max,numUnsorted-1) ;
numUnsorted--;

Selection sort complexity

Selection sort is an O(n2) sorting algorithm in the worst
case. ltis also O(n2) in the best case!

Unlike other sorts, selection sort’s runtime is completely
insensitive to the order of the data.

Insertion sort

6 5 3 1 8 7 2 4

(see Wikipedia for animation)

Insertion sort

Insertion sort is a sorting algorithm in which the next
element is “inserted” into a sorted array during each step.
Insertion sort makes n-1 passes through the sorted data,
performing pairwise comparisons of elements using <.

Insertion sort maintains the invariant that the leftmost n-
numUnsorted elements are sorted.

|.e., insertion sort builds a sorted order to the left.




Insertion sort complexity

Insertion sort is an O(n2) sorting algorithm in the worst
case. Insertion sort is O(n) in the best case.

Insertion sort algorithm

public static void insertionSort(int datal[], int n)
// pre: 0 <= n <= data.length
// post: values in datal[0..n-1] are in ascending order

{

int numSorted = 1; // number of values in place
int index; // general index

while (numSorted < n)

{

// take the first unsorted value
int temp = data[numSorted];
// ...and insert it among the sorted:
for (index = numSorted; index > 0; index--)
{
if (temp < datalindex-1])

{

datal[index] = datal[index-1];
} else {

break;
}

}

// reinsert value
datalindex] = temp;
numSorted++;

Recap & Next Class

Today:

«Comparators
*Selection sort
*Insertion sort

Next class:

«Fast sorts




