
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 12
Abstract data types

Topics

•ADTs
•More linked lists

Your to-dos

1. Read before Mon: Bailey, Ch 6-6.3.
2. Lab 4 (partner lab), due Tuesday 3/9 by 10pm.

Announcements

COOKIES

•Midterm exam, in lab, Thursday, March 17.
•Friday colloquium, Elena Glassman (Harvard), 
2:35pm in Wege Auditorium

“Human-AI (Mis)Communication: challenges
and tools for successfully communicating
what we want to computers”
Abstract
While we don’t always use words, communicating what we want to a computer, especially an artificially intelligent
one, is a conversation—with ourselves as well as with it, a recurring loop with optional steps depending on the
complexity of the situation and our request. I will present some key, perhaps previously under-appreciated steps
and describe conditions where it is critical to support them, illustrated with examples from recent publications
of (1) novel interfaces for interactive program synthesis and (2) interactive visualizations of large piles of complex
data. In the process, I will describe relevant theories from the learning sciences, i.e., Variation Theory and
Analogical Learning Theory, that have design implications for future interface and interactive system design—to
hopefully maximize the bidirectional speed and accuracy of human-AI communication.

Quiz

The purpose of a class:

To “abstract away” implementation details.

Abstraction

Abstraction is the process of removing irrelevant
information so that a program is easier to understand.

Vector

toStr
ing

size
add

remove

clear

Do you see any similarities?

LinkedList

toStr
ing

size
add

remove

clear

The two classes share the same interface.

Interface

An interface defines boundary between two systems across
which they share information. An interface is a contract:
calling a method defined in an interface returns the data as
promised.

Because an interface contains no implementation,
p r o g r a m m e r s w h o u s e t h e m c a n n o t r e l y o n
implementation details.

E.g., the List interface states that there must be an add
method but does not say how it should be implemented.

List
A list is an ordered collection of items of an element of type
E. It supports prepending an element to the front, appending
(adding) and element to the end, finding an element, and
element removal.

Observe that this similarity is “deeper” than just what an
interface provides….

A Vector is a list.

A SinglyLinkedList is a list.

A DoublyLinkedList is a list.

Abstract Data Type

An abstract data type is a mathematical formulation of a
data type. ADTs abstract away accidental properties of data
structures (e.g., implementation details, programming
language). Instead, ADTs contain only essential properties
and are concisely defined by their logical behavior over a
set of values and a set of operations.

In an ADT, precisely how data is represented on a
computer does not matter.

By contrast: data structure

A data structure is the physical form of a data type, i.e., it
is an implementation of an ADT. Generally, data structures
are designed to efficiently support the logical operations
described by the ADT.

For data structures, precisely how data is represented on
a computer matters a lot. Simple data structures are often
composed of simple representations, like primitives, while
more complex data structures are composed of other data
structures.

Vector, SinglyLinkList, etc. are data structures.

A Vector is a List Vector Big-O

operation worst best

add(int i, E e) O(n) O(1)

get(int i) O(1) O(1)

indexOf(E e) O(n) O(1)

remove(E e) O(n) O(1)

size() O(1) O(1)

A Linked List is a List Singly-Linked List Big-O

operation worst best

add(int i, E e) O(n) O(1)

get(int i) O(n) O(1)

indexOf(E e) O(n) O(1)

remove(E e) O(n) O(1)

size() O(n) [O(1) w/mod.] O(n)

ADTs cannot be expressed in Java

At least not directly.

Instead, Java uses types to stand in for ADTs.

Because types in Java are of ten bound to an
implementation, Java provides two mechanisms for
programmers to specify a type with varying degrees on a
mechanism: interfaces and abstract classes.

Missing from Java: ADT behavior

Java provides no way of specifying behavior independently
of implementation.

E.g., a List interface might require

public void prepend(T elem)

But there’s no way to require that the implementation
actually place the element at the beginning of the list.

Interface

An interface defines boundary between two systems across
which they share information. An interface is a contract:
calling a method defined in an interface returns the data as
promised.

An interface contains no implementation!

You cannot specify behavior at all!

Honkable

Abstract class

An abstract class is a partial implementation, mainly used
as a labor-saving device.

E.g., many List implementations will implement methods
the same way. Why duplicate all that work?

isEmpty() can always be implemented by checking that
size() == 0.

AbstractHonkable

"We will encourage you to develop the three
great virtues of a programmer: laziness,
impatience, and hubris.”

—Larry Wall, inventor of the Perl programming language

Laziness. The quality that makes you go to
great e ffor t to reduce overa l l energy
expenditure. It makes you write labor-saving
programs that other people will find useful, and
document what you wrote so you don't have to
answer so many questions about it. Hence, the
first great virtue of a programmer.

Inheritance

Inheritance is a mechanism for defining a class in terms of
another class. It is a labor-saving device employed to
reduce code duplication. Inheritance allows programmers
to specify a new implementation while :

1. maintaining the same behavior,
2. reusing code, and
3. extending the functionality of existing software.

(cf. laziness)

Recap & Next Class

•ADTs
•Lists

Today:

Next class:

•Sorting

