
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 11
Linked lists

Topics

•Mathematical induction  
Vectors—why add is “always” O(1)

•Linked lists

Your to-dos

1. Read before Fri: Bailey, Ch 3.4–3.5.
2. Lab 4 (partner lab), due Tuesday 3/9 by 10pm.

Mathematical Induction

Principle of Mathematical Induction
Let P(n) be a predicate that is defined for integers n, and
let a be a fixed integer.

If the following two statements are true:

1. P(a) is true.
2. For all integers k ≥ a, if P(k) is true then P(k + 1) is true.

then the statement

for all integers n ≥ a, P(n) is true

is also true.

To be clear:

If you want to prove that P(n) is true for all integers n ≥ a,

1. You must first prove that P(a) is true.

2. Then suppose P(k) is true and prove that P(k+1) is true.

Names for things and “form”

Hypothesis: P(n) is true for all integers n ≥ a,

1. Base case: P(a) is true.

2. Inductive step:

For all integers k ≥ a, if P(k) is true then P(k+1) is true.

Like recursion, there is an analogy

P(a)

P(k)

P(k+1)

Example

Prove that the sum of the first n integers is:

n(n+1)
2

n(n+1)
2P(n) : 1 + 2 + 3 + … + n =

Example: step 1

Step 1: Prove P(a)

1(1+1)
2P(a) : 1 =

Is this statement true? Yes.

Proof: 1(1+1)
2

2
2= = 1

Example: step 2

Step 2: Prove P(k) ⇒ P(k+1)

k(k+1)
2P(k) : 1 + 2 + 3 + … + k =

Prove:

Assume the following is true:

(k+1)((k+1)+1)
2P(k+1) : 1 + 2 + 3 + … + (k + 1) =

Example: step 2, left side

Step 2: Prove P(k) ⇒ P(k+1)

(1 + 2 + 3 + … + k) + (k + 1)

According to P(k), which is true,
it must be equal to:

k(k+1)
2(1 + 2 + 3 + … + k) + (k + 1) = + (k + 1)

Example: step 2, left side

Step 2: Prove P(k) ⇒ P(k+1)
k(k+1)

2= + (k + 1)

= k(k+1) + 2(k+1)
2

k(k+1)
2= k(k+1)
2

2(k+1)
2+

= (k+1)(k+2)
2

Simplify

Let’s stop here.
The left side is

Example: step 2, right side

Step 2: Prove P(k) ⇒ P(k+1)

(k+1)((k+1)+1)
2P(k+1) : 1 + 2 + 3 + … + (k + 1) =

Let’s handle the right side now.

Simplify

(k+1)((k+1)+1)
2

(k+1)(k+2)
2

Let’s stop here.

Example: step 2, conclusion

Step 2: Prove P(k) ⇒ P(k+1)

We just showed that the left side

equals the right side

(k+1)(k+2)
2

(k+1)(k+2)
2

(k+1)((k+1)+1)
2P(k+1) : 1 + 2 + 3 + … + (k + 1) =

Example: done

Step 2: Prove P(k) ⇒ P(k+1)

Step 1: Prove P(a)

Therefore,
n(n+1)

2P(n) : 1 + 2 + 3 + … + n =
For all n ≥ 1.
Is true.

Expanding vectors: why double?

Why is the array doubling strategy
for Vector better than expanding the
array one element at a time?

One-at-a-time expansion

…

Initial array.

Insert element.

New array; copy previous; insert element.

New array; copy previous; insert element.

New array; copy previous; insert element.

…

‘a’ ‘b’

‘a’ ‘b’ ‘c’

‘a’ ‘b’ ‘c’ ‘d’

‘a’

Insertion into an array

How much does array insertion cost?

‘a’ ‘b’ ‘c’

‘d’

It costs O(1).

In fact, lookup and insertion both cost O(1).

Tradeoff: arrays are fixed size.

Copying an array

How much does an array copy cost?

‘a’ ‘b’ ‘c’ ‘d’

It costs O(1) × m, where m is the size of the original array.

≈ O(m)

of copies for one-at-a-time expansion:

How many copies?

+ + + … +

add()

1
2nd

elem.

2
3rd

elem.

3
4th

elem.

(n-1)
nth

elem.

Recall theorem: 1 + 2 + 3 + … + k = k(k+1)/2

Sub n-1 for k: (n-1)((n-1)+1)/2 = n(n-1)/2

= (n2-n)/2

One-at-a-time expansion costs ≈ O(n2)

of copies for doubling expansion:

How many copies?

+ + + … +

add()

1
up to
2nd

elem.

2
up to
4th

elem.

4
up to
8th

elem.

(n/2)
up to
nth

elem.

Neat theorem: 1 + 2 + 4 + … + 2k-1 = 2k-1
Suppose n = 2k.

Doubling expansion costs ≈ O(n)

Then 1 + … + n/2 = 1 + … + 2k/2
= 1 + … + 2k-1 = 2k-1 = n-1

Doubling expansion costs ≈ O(n)

One-at-a-time expansion costs ≈ O(n2)

Which is faster?

Doubling is Vin Diesel-approved.

💩💩
😎😎

A good practice induction problem

Prove: n cents can be obtained by using only 3-
cent and 8-cent coins, for all n ≥ 15.

Linked Lists Linked List

A linked list is a recursive data structure. A linked list is
composed of simple pieces called list nodes. A list node
contains data (of generic type T) and a reference (a “link”)
to either another list node or null.

Linked List

The empty list is defined as null.

Linked List

Every other list has at least one list node.

data next

Linked List

A list node stores data of type T.

2

Here, T is Integer.

data next

Linked List

The next field stores a reference (“link”) to the next node.

2

If the node is the last node, the next node is null.

data next

Linked List

If the next node is not null, it is, recursively, a list node.

23

The last node in the list must always point to null.

data nextdata next

Linked List

A list has parts.

234

head tail

Linked List

When we add data to a list, we always
append to the head.

234

Linked List

To find a value, we must always traverse  
the list starting from the head.

234

E.g., looking for 2…

Linked List

234

E.g., looking for 2…

To find a value, we must always traverse  
the list starting from the head.

Linked List

234

E.g., looking for 2…

To find a value, we must always traverse  
the list starting from the head.

Linked List

234

E.g., looking for 2…

To find a value, we must always traverse  
the list starting from the head.

Example code

The purpose of a class:

To “abstract away” implementation details.

Abstraction

Abstraction is the process of removing irrelevant
information so that a program is easier to understand.

Think of a class as having two sides.

Vector

Design so user never needs to “look inside”.

inside outside

Think of a class as having two sides.

The outside: A class should represent one idea, and the
class’s methods should support working with that one idea.
E.g., Vector: Represents an arbitrarily long sequence of
elements. Ideally, it also has the same asymptotic properties
as an array.

You can:

•add to it
•remove from it
• ask it for its size…
• convert it toString
• etc.

The user of a class should not
need to know how a class works.

Vector

object[] elementData

int elementCount

5

C
S
1
3
6

i
s

t
h
e

b
e
s
t

c
l
a
s
s

toStr
ing

sizeadd

remove

clear

LinkedList

ListNode list

int elementCount

5toStr
ing

sizeadd

remove

clear

∅1 2 3

Vector

toStr
ing

size
add

remove

clear

Do you see any similarities?

LinkedList

toStr
ing

size
add

remove

clear

The two classes share the same interface.

Interface

An interface defines boundary between two systems across
which they share information. An interface is a contract:
calling a method defined in an interface returns the data as
promised.

Because an interface contains no implementation,
p r o g r a m m e r s w h o u s e t h e m c a n n o t r e l y o n
implementation details.

E.g., the List interface states that there must be an add
method but does not say how it should be implemented.

structure5 List implementations

In structure5, the following classes are all a kind of List:

Vector

SinglyLinkedList

DoublyLinkedList

CircularList

So what is a List exactly?

Recap & Next Class

•Why Vector should double
•Lists

Today:

Next class:
•ADTs
•More lists

