CSCI 136:
Data Structures
and
Advanced Programming
Lecture 10
Recursion, part 2
Instructor: Dan Barowy
Williams

Topics
• Quiz 2—best case
• Recursion costs
• Mathematical Induction

Your to-dos
1. Lab 3, due Tuesday 3/1 by 10pm
2. Read before Wed: Bailey, Ch 9.4–9.5.

Announcements
• Lab 1: feedback today
• Lab 1: if feedback has mistakes…
What is the “best case”?

Does the best case depend on \(n \)?
(where \(n \) is the size of the input)

No. The algorithm can finish early even if \(n \) is large.

Practice Quiz

Recall: Factorial

- \(n! = n \times (n-1) \times (n-2) \times \ldots \times 1 \)
- Work with a partner and see if you can come up with a recursive solution.
How much does a recursive solution cost?

```java
class Factorial {
    public static int fact(int n) {
        if (n == 0) { return 1; }
        return n * fact(n - 1);
    }
    public static void main(String[] args) {
        int n = Integer.parseInt(args[0]);
        System.out.println(fact(n));
    }
}
```

Call program with input “3”.

Graphically…

```
class Factorial {
    public static int fact(int n) {
        if (n == 0) { return 1; }
        return n * fact(n - 1);
    }
    public static void main(String[] args) {
        int n = Integer.parseInt(args[0]);
        System.out.println(fact(n));
    }
}
```

Call program with input “3”.

Call stack

Call program with input “3”.

Call stack
class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }
 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

I skipped a subtlety here; did you spot it?
class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }
 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}
class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

Base case: recursion terminates.
class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }
 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

Call stack

```
main
  args
    n = 3
```

```
fact
  n = 3
```

```
fact
  n = 2
```

```
fact
  n = 1
```

```
ret = 1
```

```
ret = 2
```

```
ret = 1
```

```
ret = 3
```

```
ret = 6
```
class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }
 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

Call stack

main
args
n = 3
ret = 6

Call stack

main
args
n = 3
ret = 6
s = "6"
println
s = "6"

I skipped another subtlety here; did you spot it?

Recursion tradeoffs

- Advantages
 - Often easier to construct recursive solution
 - Code is usually cleaner
 - Some problems do not have obvious non-recursive solutions

- Disadvantages
 - Time cost of recursive calls
 - Memory cost (need to store state for each recursive call until base case is reached)
Mathematical Induction

- The mathematical cousin of recursion is induction
- Induction is a proof technique
- Purpose: to simultaneously prove an infinite number of theorems!

A note about “formal methods”

If the problem “fits” the mold, there is a procedure for determining truth.

Principle of Mathematical Induction

Let $P(n)$ be a predicate that is defined for integers n, and let a be a fixed integer.

If the following two statements are true:

1. $P(a)$ is true.
2. For all integers $k \geq a$, if $P(k)$ is true then $P(k + 1)$ is true.

then the statement

for all integers $n \geq a$, $P(n)$ is true

is also true.
Principle of Mathematical Induction (variant)

Let $P(n)$ be a predicate that is defined for integers n, and let a be a fixed integer.

If the following two statements are true:

1. $P(a)$ is true.
2. For all integers $k > a$, if $P(k-1)$ is true then $P(k)$ is true.

then the statement

for all integers $n \geq a$, $P(n)$ is true

is also true.

To be clear:

If you want to prove that $P(n)$ is true for all integers $n \geq a$,

1. You must first prove that $P(a)$ is true.
2. Then you must prove that:

For all integers $k \geq a$, if $P(k)$ is true then $P(k+1)$ is true.

Critically, when proving #2, assume that $P(k)$ is true and show that $P(k+1)$ must also be true.

Names for things and “form”

Hypothesis: $P(n)$ is true for all integers $n \geq a$,

1. Base case: $P(a)$ is true.
2. Inductive step:

For all integers $k \geq a$, if $P(k)$ is true then $P(k+1)$ is true.

Like recursion, there is an analogy
Like recursion, there is an analogy

Example

Prove that the sum of the first n integers is:

$$\frac{n(n+1)}{2}$$

Example

Put another way, prove

$$P(n) : 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}$$

for all $n \geq 1$.

We have an unbounded number of hypotheses ("for all $n \geq 1$").

Use mathematical induction.

Remember the template!

Step 1: Prove $P(a)$
Step 2: Prove $P(k) \Rightarrow P(k+1)$

Therefore,

$$P(n) : 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}$$

For all $n \geq 1$.

Is true.
Example

Step 1: Prove $P(a)$

What would a good a be?

$$P(n) : 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}$$

The “simplest” instance is $a = 1$. Let’s start there.

Example

Step 1: Prove $P(a)$

$$P(a) : 1 = \frac{1(1+1)}{2}$$

Is this statement true? Yes.

Proof: $\frac{1(1+1)}{2} = \frac{2}{2} = 1$

Example

Step 2: Prove $P(k) \Rightarrow P(k+1)$

Assume the following is true:

$$P(k) : 1 + 2 + 3 + \ldots + k = \frac{k(k+1)}{2}$$

Prove:

$$P(k+1) : 1 + 2 + 3 + \ldots + (k + 1) = \frac{(k+1)((k+1)+1)}{2}$$

Let’s handle the left side first.

$$1 + 2 + 3 + \ldots + (k + 1)$$

Looks familiar. Isn’t it the same as:

$$(1 + 2 + 3 + \ldots + k) + (k + 1)$$
Example

Step 2: Prove $P(k) \Rightarrow P(k+1)$

$$k(k+1)$$

According to $P(k)$, which is true, it must be equal to:

$$(1 + 2 + 3 + \ldots + k) + (k + 1) = \frac{k(k+1)}{2} + (k + 1)$$

Let's handle the right side now.

Let's stop here.

The left side is

$$\frac{(k+1)(k+2)}{2}$$

Let's stop here.

We just showed that the left side

equals the right side

$$\frac{(k+1)(k+2)}{2}$$
Example

Step 1: Prove $P(a)$

Step 2: Prove $P(k) \Rightarrow P(k+1)$

Therefore,

$$P(n) : 1 + 2 + 3 + \ldots + \frac{n(n+1)}{2}$$

For all $n \geq 1$.

Is true.

Recap & Next Class

Today:

- Recursion costs
- Mathematical induction

Next class:

- ADTs
- Lists