Topics

- Time and space
- Pre/post conditions

1. Lab 3, due Tuesday $3 / 1$ by 10 pm ([random] partner lab!)
2. Read before Fri: Bailey, Ch 7.1-7.2.

Asymptotic analysis

We measure time and space similarly.
(I'll focus on time today)

How do we know if an algorithm is faster than another?

Why can't we just measure "wall time"?

Let's just count "steps", then

- If we count steps, then...
- what is a "step"?
- what about steps inside loops?

A little context

- How accurate do we need to be?
- If one algorithm takes 64 steps and another 128 steps, do we need to know the precise number?

What we do

Instead of precisely counting steps, we usually develop an approximation of a program's time or space complexity.

This approximation ignores tiny details and focuses on the big picture: how do time and space requirements grow as a function of the size of the input?

Some things that cost "one step"

Accessing an element of an array.
arr [5]
Assigning a value to a variable.
int $\mathrm{x}=10$;
Reading a class field.
foo.some_data;
Elementary mathematical operations.
$x+1$
y * z
Returning something.

```
return x;
```


Example

```
// pre: array length n > 0
public static int findPosOfMax(int[] arr) {
            int maxPos = 0
        for (int i = 1; i < arr.length; i++)
            if (arr[maxPos] < arr[i]) maxPos = i;
        return maxPos;
    }
```

- Can we count steps exactly? Do we even want to?
- if complicates counting
- Idea: overcount: assume if block always runs
- in the worst case, it does
- Overcounting gives upper bound on run time
- Can also undercount for lower bound

Overcounting Example

Total cost: $\mathrm{c}_{1}+\mathrm{nc} \mathrm{c}_{2}+\mathrm{nc}_{3}+\mathrm{nc}_{4}+\mathrm{C}_{5}$
$=\mathrm{C}_{1}+\mathrm{n}\left(\mathrm{C}_{2}+\mathrm{C}_{3}+\mathrm{C}_{4}\right)+\mathrm{C}_{5}$
$=\mathrm{n}\left(\mathrm{c}_{2}+\mathrm{C}_{3}+\mathrm{C}_{4}\right)+\mathrm{C}_{1}+\mathrm{C}_{5}$
$\approx O(n)$
(as you shall see)

Big-O notation

Let f and g be real-valued functions that are defined on the same set of real numbers. Then f is of order g, written $f(n)$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$, if and only if there exists a positive real number c and a real number n_{0} such that for all n in in the common domain of f and g,
$|f(\mathrm{n})| \leq \mathrm{c} \times \lg (\mathrm{n}) \mid$, whenever $\mathrm{n}>\mathrm{n}_{0}$.

We read this as: " $f(n)$ is $\mathbf{O (g (n)) " ~}$ as " \mathbf{f} of \mathbf{n} is big-oh of \mathbf{g} of \mathbf{n}."

Focus is on order of magnitude

We can do this analysis for the best, average, and worst cases. We often focus on the best and worst cases.

Average case analysis is interesting and extremely useful, but it's beyond the scope of this course.

English, please!

$$
|f(\mathrm{n})| \leq \mathrm{c} \times|\mathrm{g}(\mathrm{n})|, \text { whenever } \mathrm{n}>\mathrm{n}_{0} .
$$

Intuition:
" $f(n)$ is bounded from above by $g(n) . "$

What we want: some $\mathrm{g}(\mathrm{n})$ that is both:

- Always bigger than $f(n)$ (after some value n_{0})
- Close to f(n)

If so, f is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$.

Function growth

Consider the following functions, for $\mathrm{x} \geq 1$

- $f(x)=1$
- $g(x)=\log _{2}(x) / /$ Reminder: if $x=2^{\wedge} n, \log _{2}(x)=n$
- $h(x)=x$
- $m(x)=x \log _{2}(x)$
- $n(x)=x^{2}$
- $p(x)=x^{3}$
- $r(x)=2^{x}$

Function growth \& Big-O

- Rule of thumb: ignore multiplicative constants
- Examples:
- Treat n and $n / 2$ as same order of magnitude
- $n^{2} / 1000,2 n^{2}$, and $1000 n^{2}$ are "pretty much" just n^{2}
- $a_{0} n^{k}+a_{1} n^{k-1}+a_{2} n^{k-2+\ldots} a_{k}$ is roughly n^{k}
- The key is to find the most significant or dominant term
- $E x: \lim _{x \rightarrow \infty}\left(3 x^{4}-10 x^{3}-1\right)=x^{4}$ (Why?)
- So $3 x^{4}-10 x^{3}-1$ grows "like" x^{4}

Why base of log doesn't matter

- In CS, we generally use $\log _{2}$
- But for asymptotic analysis, the base does not matter.
- Proof:
$\log _{2}(x)=\log _{10}(x) / \log _{10}(2)$
$\log _{10}(2) \cdot \log _{2}(x)=\log _{10}(x)$
$c \cdot \log _{2}(x)=\log _{10}(x)$
$\log _{2}$ and $\log _{10}$ are asymptotically the same!

Example

Think about the following for next class

Recap \& Next Class

Today:

- Time and space analysis
- Pre/post conditions

Next class:

- More pre/post conditions
- Recursion

