CSCI 136: Data Structures and Advanced Programming
Lecture 8
Asymptotic analysis
Instructor: Dan Barowy
Williams

Topics

• Time and space
• Pre/post conditions

Your to-dos

1. Lab 3, due Tuesday 3/1 by 10pm ([random] partner lab!)
2. Read before Fri: Bailey, Ch 7.1–7.2.
We measure **time** and **space** similarly.
(I’ll focus on **time** today)

How do we know if an algorithm is faster than another?

Why can’t we just measure “wall time”?

Why can’t we just measure “wall time”?

• Other things are happening **at the same time**
• Total running time **often varies by input size**
• **Different computers** usually produce **different results**!

Let’s just count “steps”, then

• If we count steps, then…
 • what is a “**step**”?
 • what about steps **inside loops**?
A little context

- How **accurate** do we need to be?
- If one algorithm takes **64 steps** and another **128 steps**, do we need to know the precise number?

What we do

Instead of precisely counting steps, we usually develop an **approximation** of a program’s **time** or **space complexity**.

This approximation **ignores tiny details** and focuses on the big picture: **how do time and space requirements grow as a function of the size of the input?**

Some things that cost “one step”

Accessing an element of an array.
```java
arr[5]
```
Assigning a value to a variable.
```java
int x = 10;
```
Reading a class field.
```java
foo.some_data;
```
Elementary mathematical operations.
```java
x + 1
y * z
```
Returning something.
```java
return x;
```

Example

```java
// pre: array length n > 0
public static int findPosOfMax(int[] arr) {
    int maxPos = 0
    for (int i = 1; i < arr.length; i++)
        if (arr[maxPos] < arr[i]) maxPos = i;
    return maxPos;
}
```

- Can we count steps exactly? Do we even want to?
 - if complicates counting
- Idea: **overcount**: assume if block always runs
 - in the worst case, it does
- Overcounting gives **upper bound** on run time
- Can also **undercount** for **lower bound**
Overcounting Example

```java
public static int findPosOfMax(int[] arr) {
    int maxPos = 0;
    for (int i = 1; i < arr.length; i++) {
        if (arr[maxPos] < arr[i]) {
            maxPos = i;
        }
    }
    return maxPos;
}
```

Total cost: \(c_1 + n c_2 + n c_3 + n c_4 + c_5\)
\(= c_1 + n(c_2 + c_3 + c_4) + c_5\)
\(= n(c_2 + c_3 + c_4) + c_1 + c_5\)
\(= O(n)\)
(as you shall see)

Focus is on order of magnitude

We can do this analysis for the **best**, **average**, and **worst** cases. We often focus on the best and worst cases.

Average case analysis is interesting and extremely useful, but it’s beyond the scope of this course.

Big-O notation

Let \(f\) and \(g\) be real-valued functions that are defined on the same set of real numbers. Then \(f\) is of order \(g\), written \(f(n) = O(g(n))\), if and only if there exists a positive real number \(c\) and a real number \(n_0\) such that for all \(n\) in the common domain of \(f\) and \(g\),

\[|f(n)| \leq c \times |g(n)|, \text{ whenever } n > n_0. \]

We read this as: “\(f(n)\) is \(O(g(n))\)” as “\(f\) of \(n\) is big-oh of \(g\) of \(n\).”

English, please!

\[|f(n)| \leq c \times |g(n)|, \text{ whenever } n > n_0. \]

Intuition:
“\(f(n)\) is bounded from above by \(g(n)\).”

What we want: some \(g(n)\) that is both:
• Always bigger than \(f(n)\) (after some value \(n_0\))
• Close to \(f(n)\)

If so, \(f\) is \(O(g(n))\).
Function growth

Consider the following functions, for \(x \geq 1 \)

- \(f(x) = 1 \)
- \(g(x) = \log_2(x) \) // Reminder: if \(x = 2^n \), \(\log_2(x) = n \)
- \(h(x) = x \)
- \(m(x) = x \log_2(x) \)
- \(n(x) = x^2 \)
- \(p(x) = x^3 \)
- \(r(x) = 2^x \)

Function growth & Big-O

- Rule of thumb: ignore multiplicative constants
- Examples:
 - Treat \(n \) and \(n/2 \) as same order of magnitude
 - \(n^2/1000, 2n^2, \) and \(1000n^2 \) are “pretty much” just \(n^2 \)
 - \(a_0n^k + a_1n^{k-1} + a_2n^{k-2} + \ldots a_k \) is roughly \(n^k \)
- The key is to find the most significant or dominant term
- Ex: \(\lim_{x \to \infty} (3x^4 - 10x^3 - 1) = x^4 \) (Why?)
 - So \(3x^4 - 10x^3 - 1 \) grows “like” \(x^4 \)

Why base of log doesn’t matter

- In CS, we generally use \(\log_2 \)
- But for asymptotic analysis, the base does not matter.
- Proof:
 \[
 \log_2(x) = \frac{\log_{10}(x)}{\log_{10}(2)} \]
 \[
 \log_{10}(2) \cdot \log_2(x) = \log_{10}(x) \]
 \[
 c \cdot \log_2(x) = \log_{10}(x) \]
 \[
 \log_2 \) and \(\log_{10} \) are asymptotically the same! \]
Think about the following for next class

Example

\[x + 1 \]

What does this operation do? (i.e., what is our desired post-condition?)

Recap & Next Class

Today:

- Time and space analysis
- Pre/post conditions

Next class:

- More pre/post conditions
- Recursion