CSCI 136: Data Structures and Advanced Programming
Lecture 7
Object equality

Instructor: Dan Barowy Williams

Topics

• Study tip #2
• Practice Quiz
• Plan for bugs
• How object comparison works

Your to-dos

1. Lab 2, due Tuesday 2/22 by 10pm.
2. Read before Wed: Bailey, Ch 5.2 to end of Ch 5.

Announcements

• Colloquium: Senior thesis proposals #2, 2:35pm in Wege Auditorium… with cookies.
• Survey: should I take off my mask during lecture?
Study tip #2

Confusion is **not necessarily a bad thing**.

Good courses are **intentionally designed** to put you in this state.

Expect to have this feeling.

Sometimes Confusion is a Good Thing

Tania Lombrozo

NPR, December 14, 2015

“Students who were confused … as reflected in inconsistent responses on subsequent questions … **ultimately did better on a final test assessing whether they learned the key points from the lessons.**”

Study tip #2

Sometimes Confusion is a Good Thing

Tania Lombrozo

NPR, December 14, 2015

“… [C]onfusion is itself a step toward learning — an experience that motivates the learner to reconcile an inconsistency or remedy some deficit. In this view, confusion isn't just a side effect of beneficial cognitive processes, but a beneficial process itself. … [T]here’s evidence that experiencing difficulties in learning can sometimes be desirable, leading to deeper processing and better long-term memory.”

Study tip #2

Frustration = confusion + time pressure

Know that you need time to be confused and work through that confusion.

Learning feels inefficient.
Study tip #2
Confusion tells you something valuable:

It is a signal that you are not confident in your knowledge.
Use this signal to guide your study (e.g.: glossary).

Two objectives of Labs/Office/TA hours:
• Maximize help during hours most in demand.
• Time to work on problem by yourself.

Remember: Learning feels inefficient.

(Un) fun fact:
On average, only 30% of professional programmer time is spent writing new code.
The other 70% is spent designing and debugging code.

(on average, ~50% of total time spend debugging)
Learning how to debug is at least as important as learning how to code.
Expect to do a lot of debugging.

Source: “The Mythical Man-Month”, Fred Brooks; University of Cambridge Judge Business School; etc.
Assume that your code will fail, and build-in checks. E.g., toString().

Q: Why do I have to use `.equals()` to compare String objects?

A: When comparing values, use `==`
When comparing objects, use `.equals()`
Boxes and arrows
(aka “the data structure inside every computer”)
```java
class Program {
    public static void foo() {
        String s1 = new String("Hello class!");
        String s2 = new String("Hello class!");
        System.out.println(s1 == s2);
        System.out.println(s1.equals(s2));
    }
    public static void main(String[] args) {
        foo();
    }
}
```
class Program {
 public static void foo() {
 String s1 = new String("Hello class!");
 String s2 = new String("Hello class!");
 System.out.println(s1 == s2);
 System.out.println(s1.equals(s2));
 }
 public static void main(String[] args) {
 foo();
 }
}

The two objects are no longer pointed to by anything. They are “garbage”. Garbage is “collected” in Java.

The program has now terminated.
Asymptotic analysis

How do we know if an algorithm is faster than another?

Why can’t we just measure “wall time”?

Recap & Next Class

Today:
- Study tip #2
- Plan for bugs
- Object comparison

Next class:
- Time and space
- Recursion