
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 7
Object equality

Topics

•Study tip #2
•Practice Quiz
•Plan for bugs
•How object comparison works

Your to-dos

1. Lab 2, due Tuesday 2/22 by 10pm.
2. Read before Wed: Bailey, Ch 5.2 to end of Ch 5.

Announcements

•Colloquium: Senior thesis proposals #2, 2:35pm
in Wege Auditorium… with cookies.

•Survey: should I take off my mask during lecture?

COOKIES

Study tip #2
Confusion is not necessarily a bad thing.

Good courses are intentionally designed to
put you in this state.

Expect to have this feeling. https://www.npr.org/sections/13.7/2015/12/14/459651340/sometimes-confusion-is-a-good-thing

Sometimes Confusion is a Good Thing
Tania Lombrozo
NPR, December 14, 2015

“Students who were confused … as reflected in inconsistent
responses on subsequent questions … ultimately did better on
a final test assessing whether they learned the key points from
the lessons.”

Study tip #2

https://www.npr.org/sections/13.7/2015/12/14/459651340/sometimes-confusion-is-a-good-thing

“… [C]onfusion is itself a step toward learning — an
experience that motivates the learner to reconcile an
inconsistency or remedy some deficit. In this view, confusion
isn't just a side effect of beneficial cognitive processes, but a
beneficial process itself. … [T]here’s evidence that
experiencing difficulties in learning can sometimes be
desirable, leading to deeper processing and better long-term
memory.”

Sometimes Confusion is a Good Thing
Tania Lombrozo
NPR, December 14, 2015

Study tip #2
Frustration = confusion + time pressure

Know that you need time to be confused and
work through that confusion.

Learning feels inefficient.

Study tip #2

It is a signal that you are  
not confident in your knowledge.

Use this signal to guide your study (e.g.: glossary).

Study tip #2
Confusion tells you something valuable:

Two objectives of Labs/Office/TA hours:
• Maximize help during hours most in demand.
• Time to work on problem by yourself.

Labs

Remember: Learning feels inefficient.

Practice Quiz

COOKIES

(Un) fun fact:

On average, only 30% of professional programmer time is
spent writing new code.

The other 70% is spent designing and debugging code.

(on average, ~50% of total time spend debugging)

Learning how to debug is at least as important as learning how to code.

Expect to do a lot of debugging.

Source: “The Mythical Man-Month”, Fred Brooks; University of Cambridge Judge Business School; etc.

Assume that your code will fail,
and build-in checks.

E.g., toString().

class FrequencyList {
 private Vector<Association<String,Integer>> mylist;

 ...

 public String toString() {
 String s = "[";
 for (Association<String,Integer> a : mylist) {
 s += "'" + a.getKey()
 + "' = “
 + a.getValue() + " ";
 }
 return s + "]";
 }
}

Hint!

Q: Why do I have to use .equals() to
compare String objects?

A:

When comparing values, use ==

When comparing objects, use .equals()

Boxes and arrows
(aka “the data structure inside

every computer”)

A simple program.

class Program {

 public static void foo() {
 String s1 = new String(“Hello class!”);
 String s2 = new String(“Hello class!”);
 System.out.println(s1 == s2);
 System.out.println(s1.equals(s2));
 }

 public static void main(String[] args) {
 foo();
 }
}

class Program {

 public static void foo() {
 String s1 = new String(“Hello class!”);
 String s2 = new String(“Hello class!”);
 System.out.println(s1 == s2);
 System.out.println(s1.equals(s2));
 }

 public static void main(String[] args) {
 foo();
 }
}

Call stack

class Program {

 public static void foo() {
 String s1 = new String(“Hello class!”);
 String s2 = new String(“Hello class!”);
 System.out.println(s1 == s2);
 System.out.println(s1.equals(s2));
 }

 public static void main(String[] args) {
 foo();
 }
}

Call stack

main

Stack frame: reserved space in memory for local variables.
Q: Do we have any local variables in main?

args

class Program {

 public static void foo() {
 String s1 = new String(“Hello class!”);
 String s2 = new String(“Hello class!”);
 System.out.println(s1 == s2);
 System.out.println(s1.equals(s2));
 }

 public static void main(String[] args) {
 foo();
 }
}

Call stack

main
args

class Program {

 public static void foo() {
 String s1 = new String(“Hello class!”);
 String s2 = new String(“Hello class!”);
 System.out.println(s1 == s2);
 System.out.println(s1.equals(s2));
 }

 public static void main(String[] args) {
 foo();
 }
}

Call stack

main
args

foo
s1

s2

class Program {

 public static void foo() {
 String s1 = new String(“Hello class!”);
 String s2 = new String(“Hello class!”);
 System.out.println(s1 == s2);
 System.out.println(s1.equals(s2));
 }

 public static void main(String[] args) {
 foo();
 }
}

Call stack

main
args

foo
s1

s2

“Hello class!”String

ref
ere

nc
e

class Program {

 public static void foo() {
 String s1 = new String(“Hello class!”);
 String s2 = new String(“Hello class!”);
 System.out.println(s1 == s2);
 System.out.println(s1.equals(s2));
 }

 public static void main(String[] args) {
 foo();
 }
}

Call stack

main
args

foo
s1

s2

“Hello class!”String

ref
ere

nc
e

“Hello class!”String

reference

class Program {

 public static void foo() {
 String s1 = new String(“Hello class!”);
 String s2 = new String(“Hello class!”);
 System.out.println(s1 == s2);
 System.out.println(s1.equals(s2));
 }

 public static void main(String[] args) {
 foo();
 }
}

Call stack

main
args

foo
s1

s2

“Hello class!”String

ref
ere

nc
e

“Hello class!”String

reference

Computer: false
Because the values of s1 and s2 are references.

Those references are not the same!

class Program {

 public static void foo() {
 String s1 = new String(“Hello class!”);
 String s2 = new String(“Hello class!”);
 System.out.println(s1 == s2);
 System.out.println(s1.equals(s2));
 }

 public static void main(String[] args) {
 foo();
 }
}

Call stack

main
args

foo
s1

s2

“Hello class!”String

ref
ere

nc
e

“Hello class!”String

reference

Computer: true
Because the objects pointed to

by s1 and s2 are the same!

class Program {

 public static void foo() {
 String s1 = new String(“Hello class!”);
 String s2 = new String(“Hello class!”);
 System.out.println(s1 == s2);
 System.out.println(s1.equals(s2));
 }

 public static void main(String[] args) {
 foo();
 }
}

Call stack

main
args

“Hello class!”String

“Hello class!”String

The two objects are no longer pointed to by anything.
They are “garbage”. Garbage is “collected” in Java.

class Program {

 public static void foo() {
 String s1 = new String(“Hello class!”);
 String s2 = new String(“Hello class!”);
 System.out.println(s1 == s2);
 System.out.println(s1.equals(s2));
 }

 public static void main(String[] args) {
 foo();
 }
}

Call stack

The program has now terminated.

Asymptotic analysis How do we know if an algorithm
is faster than another?

Why can’t we just measure “wall time”?

Recap & Next Class

•Study tip #2
•Plan for bugs
•Object comparison

Today:

Next class:
•Time and space
•Recursion

